| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0cnd | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0cnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0red.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | 1 | nn0red 12588 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 11289 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Copyright terms: Public domain | W3C validator |