MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddp1even Structured version   Visualization version   GIF version

Theorem oddp1even 15282
Description: An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
oddp1even (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))

Proof of Theorem oddp1even
StepHypRef Expression
1 oddm1even 15281 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
2 2z 11669 . . 3 2 ∈ ℤ
3 peano2zm 11680 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
4 dvdsadd 15241 . . 3 ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ 2 ∥ (2 + (𝑁 − 1))))
52, 3, 4sylancr 577 . 2 (𝑁 ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ 2 ∥ (2 + (𝑁 − 1))))
6 2cnd 11371 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
7 zcn 11642 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8 1cnd 10314 . . . . 5 (𝑁 ∈ ℤ → 1 ∈ ℂ)
96, 7, 8addsub12d 10694 . . . 4 (𝑁 ∈ ℤ → (2 + (𝑁 − 1)) = (𝑁 + (2 − 1)))
10 2m1e1 11412 . . . . 5 (2 − 1) = 1
1110oveq2i 6879 . . . 4 (𝑁 + (2 − 1)) = (𝑁 + 1)
129, 11syl6eq 2852 . . 3 (𝑁 ∈ ℤ → (2 + (𝑁 − 1)) = (𝑁 + 1))
1312breq2d 4849 . 2 (𝑁 ∈ ℤ → (2 ∥ (2 + (𝑁 − 1)) ↔ 2 ∥ (𝑁 + 1)))
141, 5, 133bitrd 296 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wcel 2155   class class class wbr 4837  (class class class)co 6868  1c1 10216   + caddc 10218  cmin 10545  2c2 11350  cz 11637  cdvds 15197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964  df-nn 11300  df-2 11358  df-n0 11554  df-z 11638  df-dvds 15198
This theorem is referenced by:  zeo5  15294  oddp1d2  15296  n2dvdsm1  15319  sumodd  15325  knoppndvlem10  32823  stirlinglem5  40768  fouriersw  40921  2dvdsoddp1  42137  0dig2nn0o  42969
  Copyright terms: Public domain W3C validator