| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oddp1even | Structured version Visualization version GIF version | ||
| Description: An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| oddp1even | ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddm1even 16380 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) | |
| 2 | 2z 12649 | . . 3 ⊢ 2 ∈ ℤ | |
| 3 | peano2zm 12660 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 4 | dvdsadd 16339 | . . 3 ⊢ ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ 2 ∥ (2 + (𝑁 − 1)))) | |
| 5 | 2, 3, 4 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ 2 ∥ (2 + (𝑁 − 1)))) |
| 6 | 2cnd 12344 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 7 | zcn 12618 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 8 | 1cnd 11256 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 9 | 6, 7, 8 | addsub12d 11643 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 + (𝑁 − 1)) = (𝑁 + (2 − 1))) |
| 10 | 2m1e1 12392 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 11 | 10 | oveq2i 7442 | . . . 4 ⊢ (𝑁 + (2 − 1)) = (𝑁 + 1) |
| 12 | 9, 11 | eqtrdi 2793 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 + (𝑁 − 1)) = (𝑁 + 1)) |
| 13 | 12 | breq2d 5155 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ (2 + (𝑁 − 1)) ↔ 2 ∥ (𝑁 + 1))) |
| 14 | 1, 5, 13 | 3bitrd 305 | 1 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 1c1 11156 + caddc 11158 − cmin 11492 2c2 12321 ℤcz 12613 ∥ cdvds 16290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-dvds 16291 |
| This theorem is referenced by: zeo5 16393 oddp1d2 16395 n2dvdsm1 16406 sumodd 16425 knoppndvlem10 36522 stirlinglem5 46093 fouriersw 46246 2dvdsoddp1 47643 0dig2nn0o 48534 |
| Copyright terms: Public domain | W3C validator |