ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycoeid3 GIF version

Theorem plycoeid3 15077
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
Hypotheses
Ref Expression
plycoeid3.d (𝜑𝐷 ∈ ℕ0)
plycoeid3.a (𝜑𝐴:ℕ0⟶ℂ)
plycoeid3.z (𝜑 → (𝐴 “ (ℤ‘(𝐷 + 1))) = {0})
plycoeid3.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘))))
plycoeid3.m (𝜑𝑀 ∈ (ℤ𝐷))
plycoeid3.x (𝜑𝑋 ∈ ℂ)
Assertion
Ref Expression
plycoeid3 (𝜑 → (𝐹𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴𝑗) · (𝑋𝑗)))
Distinct variable groups:   𝐴,𝑗,𝑧   𝐴,𝑘,𝑧   𝐷,𝑘,𝑧   𝑗,𝑀   𝑘,𝑀   𝑗,𝑋,𝑧   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑧,𝑗,𝑘)   𝐷(𝑗)   𝐹(𝑧,𝑗,𝑘)   𝑀(𝑧)

Proof of Theorem plycoeid3
Dummy variables 𝑟 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycoeid3.f . . . . . 6 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘))))
21fveq1d 5563 . . . . 5 (𝜑 → (𝐹𝑋) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘)))‘𝑋))
3 eqid 2196 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘)))
4 oveq1 5932 . . . . . . . 8 (𝑧 = 𝑋 → (𝑧𝑘) = (𝑋𝑘))
54oveq2d 5941 . . . . . . 7 (𝑧 = 𝑋 → ((𝐴𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑋𝑘)))
65sumeq2sdv 11552 . . . . . 6 (𝑧 = 𝑋 → Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑋𝑘)))
7 plycoeid3.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
8 fveq2 5561 . . . . . . . . 9 (𝑞 = 𝑘 → (𝐴𝑞) = (𝐴𝑘))
9 oveq2 5933 . . . . . . . . 9 (𝑞 = 𝑘 → (𝑋𝑞) = (𝑋𝑘))
108, 9oveq12d 5943 . . . . . . . 8 (𝑞 = 𝑘 → ((𝐴𝑞) · (𝑋𝑞)) = ((𝐴𝑘) · (𝑋𝑘)))
1110cbvsumv 11543 . . . . . . 7 Σ𝑞 ∈ (0...𝐷)((𝐴𝑞) · (𝑋𝑞)) = Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑋𝑘))
12 0zd 9355 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
13 plycoeid3.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℕ0)
1413nn0zd 9463 . . . . . . . . 9 (𝜑𝐷 ∈ ℤ)
1512, 14fzfigd 10540 . . . . . . . 8 (𝜑 → (0...𝐷) ∈ Fin)
16 plycoeid3.a . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
1716adantr 276 . . . . . . . . . 10 ((𝜑𝑞 ∈ (0...𝐷)) → 𝐴:ℕ0⟶ℂ)
18 elfznn0 10206 . . . . . . . . . . 11 (𝑞 ∈ (0...𝐷) → 𝑞 ∈ ℕ0)
1918adantl 277 . . . . . . . . . 10 ((𝜑𝑞 ∈ (0...𝐷)) → 𝑞 ∈ ℕ0)
2017, 19ffvelcdmd 5701 . . . . . . . . 9 ((𝜑𝑞 ∈ (0...𝐷)) → (𝐴𝑞) ∈ ℂ)
217adantr 276 . . . . . . . . . 10 ((𝜑𝑞 ∈ (0...𝐷)) → 𝑋 ∈ ℂ)
2221, 19expcld 10782 . . . . . . . . 9 ((𝜑𝑞 ∈ (0...𝐷)) → (𝑋𝑞) ∈ ℂ)
2320, 22mulcld 8064 . . . . . . . 8 ((𝜑𝑞 ∈ (0...𝐷)) → ((𝐴𝑞) · (𝑋𝑞)) ∈ ℂ)
2415, 23fsumcl 11582 . . . . . . 7 (𝜑 → Σ𝑞 ∈ (0...𝐷)((𝐴𝑞) · (𝑋𝑞)) ∈ ℂ)
2511, 24eqeltrrid 2284 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑋𝑘)) ∈ ℂ)
263, 6, 7, 25fvmptd3 5658 . . . . 5 (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘)))‘𝑋) = Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑋𝑘)))
272, 26eqtrd 2229 . . . 4 (𝜑 → (𝐹𝑋) = Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑋𝑘)))
28 fveq2 5561 . . . . . 6 (𝑘 = 𝑟 → (𝐴𝑘) = (𝐴𝑟))
29 oveq2 5933 . . . . . 6 (𝑘 = 𝑟 → (𝑋𝑘) = (𝑋𝑟))
3028, 29oveq12d 5943 . . . . 5 (𝑘 = 𝑟 → ((𝐴𝑘) · (𝑋𝑘)) = ((𝐴𝑟) · (𝑋𝑟)))
3130cbvsumv 11543 . . . 4 Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑋𝑘)) = Σ𝑟 ∈ (0...𝐷)((𝐴𝑟) · (𝑋𝑟))
3227, 31eqtrdi 2245 . . 3 (𝜑 → (𝐹𝑋) = Σ𝑟 ∈ (0...𝐷)((𝐴𝑟) · (𝑋𝑟)))
33 plycoeid3.m . . . . 5 (𝜑𝑀 ∈ (ℤ𝐷))
34 fzss2 10156 . . . . 5 (𝑀 ∈ (ℤ𝐷) → (0...𝐷) ⊆ (0...𝑀))
3533, 34syl 14 . . . 4 (𝜑 → (0...𝐷) ⊆ (0...𝑀))
3616adantr 276 . . . . . 6 ((𝜑𝑟 ∈ (0...𝐷)) → 𝐴:ℕ0⟶ℂ)
37 elfznn0 10206 . . . . . . 7 (𝑟 ∈ (0...𝐷) → 𝑟 ∈ ℕ0)
3837adantl 277 . . . . . 6 ((𝜑𝑟 ∈ (0...𝐷)) → 𝑟 ∈ ℕ0)
3936, 38ffvelcdmd 5701 . . . . 5 ((𝜑𝑟 ∈ (0...𝐷)) → (𝐴𝑟) ∈ ℂ)
407adantr 276 . . . . . 6 ((𝜑𝑟 ∈ (0...𝐷)) → 𝑋 ∈ ℂ)
4140, 38expcld 10782 . . . . 5 ((𝜑𝑟 ∈ (0...𝐷)) → (𝑋𝑟) ∈ ℂ)
4239, 41mulcld 8064 . . . 4 ((𝜑𝑟 ∈ (0...𝐷)) → ((𝐴𝑟) · (𝑋𝑟)) ∈ ℂ)
43 eldifn 3287 . . . . . . . . . 10 (𝑟 ∈ ((0...𝑀) ∖ (0...𝐷)) → ¬ 𝑟 ∈ (0...𝐷))
4443adantl 277 . . . . . . . . 9 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ¬ 𝑟 ∈ (0...𝐷))
45 eldifi 3286 . . . . . . . . . . . . . 14 (𝑟 ∈ ((0...𝑀) ∖ (0...𝐷)) → 𝑟 ∈ (0...𝑀))
4645adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ (0...𝑀))
47 elfznn0 10206 . . . . . . . . . . . . 13 (𝑟 ∈ (0...𝑀) → 𝑟 ∈ ℕ0)
4846, 47syl 14 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ ℕ0)
49 nn0split 10228 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ0 → ℕ0 = ((0...𝐷) ∪ (ℤ‘(𝐷 + 1))))
5013, 49syl 14 . . . . . . . . . . . . 13 (𝜑 → ℕ0 = ((0...𝐷) ∪ (ℤ‘(𝐷 + 1))))
5150adantr 276 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ℕ0 = ((0...𝐷) ∪ (ℤ‘(𝐷 + 1))))
5248, 51eleqtrd 2275 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ ((0...𝐷) ∪ (ℤ‘(𝐷 + 1))))
53 elun 3305 . . . . . . . . . . 11 (𝑟 ∈ ((0...𝐷) ∪ (ℤ‘(𝐷 + 1))) ↔ (𝑟 ∈ (0...𝐷) ∨ 𝑟 ∈ (ℤ‘(𝐷 + 1))))
5452, 53sylib 122 . . . . . . . . . 10 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑟 ∈ (0...𝐷) ∨ 𝑟 ∈ (ℤ‘(𝐷 + 1))))
5554orcomd 730 . . . . . . . . 9 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑟 ∈ (ℤ‘(𝐷 + 1)) ∨ 𝑟 ∈ (0...𝐷)))
5644, 55ecased 1360 . . . . . . . 8 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ (ℤ‘(𝐷 + 1)))
57 plycoeid3.z . . . . . . . . . . 11 (𝜑 → (𝐴 “ (ℤ‘(𝐷 + 1))) = {0})
58 eqimss 3238 . . . . . . . . . . 11 ((𝐴 “ (ℤ‘(𝐷 + 1))) = {0} → (𝐴 “ (ℤ‘(𝐷 + 1))) ⊆ {0})
5957, 58syl 14 . . . . . . . . . 10 (𝜑 → (𝐴 “ (ℤ‘(𝐷 + 1))) ⊆ {0})
6016ffund 5414 . . . . . . . . . . 11 (𝜑 → Fun 𝐴)
61 peano2nn0 9306 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℕ0 → (𝐷 + 1) ∈ ℕ0)
6213, 61syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 + 1) ∈ ℕ0)
63 nn0uz 9653 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
6462, 63eleqtrdi 2289 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 + 1) ∈ (ℤ‘0))
65 uzss 9639 . . . . . . . . . . . . . 14 ((𝐷 + 1) ∈ (ℤ‘0) → (ℤ‘(𝐷 + 1)) ⊆ (ℤ‘0))
6664, 65syl 14 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝐷 + 1)) ⊆ (ℤ‘0))
6766, 63sseqtrrdi 3233 . . . . . . . . . . . 12 (𝜑 → (ℤ‘(𝐷 + 1)) ⊆ ℕ0)
6816fdmd 5417 . . . . . . . . . . . 12 (𝜑 → dom 𝐴 = ℕ0)
6967, 68sseqtrrd 3223 . . . . . . . . . . 11 (𝜑 → (ℤ‘(𝐷 + 1)) ⊆ dom 𝐴)
70 funimass4 5614 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (ℤ‘(𝐷 + 1)) ⊆ dom 𝐴) → ((𝐴 “ (ℤ‘(𝐷 + 1))) ⊆ {0} ↔ ∀𝑟 ∈ (ℤ‘(𝐷 + 1))(𝐴𝑟) ∈ {0}))
7160, 69, 70syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝐴 “ (ℤ‘(𝐷 + 1))) ⊆ {0} ↔ ∀𝑟 ∈ (ℤ‘(𝐷 + 1))(𝐴𝑟) ∈ {0}))
7259, 71mpbid 147 . . . . . . . . 9 (𝜑 → ∀𝑟 ∈ (ℤ‘(𝐷 + 1))(𝐴𝑟) ∈ {0})
7372r19.21bi 2585 . . . . . . . 8 ((𝜑𝑟 ∈ (ℤ‘(𝐷 + 1))) → (𝐴𝑟) ∈ {0})
7456, 73syldan 282 . . . . . . 7 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝐴𝑟) ∈ {0})
75 elsni 3641 . . . . . . 7 ((𝐴𝑟) ∈ {0} → (𝐴𝑟) = 0)
7674, 75syl 14 . . . . . 6 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝐴𝑟) = 0)
7776oveq1d 5940 . . . . 5 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ((𝐴𝑟) · (𝑋𝑟)) = (0 · (𝑋𝑟)))
787adantr 276 . . . . . . 7 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑋 ∈ ℂ)
7978, 48expcld 10782 . . . . . 6 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑋𝑟) ∈ ℂ)
8079mul02d 8435 . . . . 5 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (0 · (𝑋𝑟)) = 0)
8177, 80eqtrd 2229 . . . 4 ((𝜑𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ((𝐴𝑟) · (𝑋𝑟)) = 0)
82 elfzelz 10117 . . . . . . 7 (𝑝 ∈ (0...𝑀) → 𝑝 ∈ ℤ)
8382adantl 277 . . . . . 6 ((𝜑𝑝 ∈ (0...𝑀)) → 𝑝 ∈ ℤ)
84 0zd 9355 . . . . . 6 ((𝜑𝑝 ∈ (0...𝑀)) → 0 ∈ ℤ)
8514adantr 276 . . . . . 6 ((𝜑𝑝 ∈ (0...𝑀)) → 𝐷 ∈ ℤ)
86 fzdcel 10132 . . . . . 6 ((𝑝 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐷 ∈ ℤ) → DECID 𝑝 ∈ (0...𝐷))
8783, 84, 85, 86syl3anc 1249 . . . . 5 ((𝜑𝑝 ∈ (0...𝑀)) → DECID 𝑝 ∈ (0...𝐷))
8887ralrimiva 2570 . . . 4 (𝜑 → ∀𝑝 ∈ (0...𝑀)DECID 𝑝 ∈ (0...𝐷))
89 eluzelz 9627 . . . . . 6 (𝑀 ∈ (ℤ𝐷) → 𝑀 ∈ ℤ)
9033, 89syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
9112, 90fzfigd 10540 . . . 4 (𝜑 → (0...𝑀) ∈ Fin)
9235, 42, 81, 88, 91fisumss 11574 . . 3 (𝜑 → Σ𝑟 ∈ (0...𝐷)((𝐴𝑟) · (𝑋𝑟)) = Σ𝑟 ∈ (0...𝑀)((𝐴𝑟) · (𝑋𝑟)))
9332, 92eqtrd 2229 . 2 (𝜑 → (𝐹𝑋) = Σ𝑟 ∈ (0...𝑀)((𝐴𝑟) · (𝑋𝑟)))
94 fveq2 5561 . . . 4 (𝑟 = 𝑗 → (𝐴𝑟) = (𝐴𝑗))
95 oveq2 5933 . . . 4 (𝑟 = 𝑗 → (𝑋𝑟) = (𝑋𝑗))
9694, 95oveq12d 5943 . . 3 (𝑟 = 𝑗 → ((𝐴𝑟) · (𝑋𝑟)) = ((𝐴𝑗) · (𝑋𝑗)))
9796cbvsumv 11543 . 2 Σ𝑟 ∈ (0...𝑀)((𝐴𝑟) · (𝑋𝑟)) = Σ𝑗 ∈ (0...𝑀)((𝐴𝑗) · (𝑋𝑗))
9893, 97eqtrdi 2245 1 (𝜑 → (𝐹𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴𝑗) · (𝑋𝑗)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  cdif 3154  cun 3155  wss 3157  {csn 3623  cmpt 4095  dom cdm 4664  cima 4667  Fun wfun 5253  wf 5255  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100  cexp 10647  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  dvply2g  15086
  Copyright terms: Public domain W3C validator