| Step | Hyp | Ref
 | Expression | 
| 1 |   | plycoeid3.f | 
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 2 | 1 | fveq1d 5560 | 
. . . . 5
⊢ (𝜑 → (𝐹‘𝑋) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑋)) | 
| 3 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 4 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑧 = 𝑋 → (𝑧↑𝑘) = (𝑋↑𝑘)) | 
| 5 | 4 | oveq2d 5938 | 
. . . . . . 7
⊢ (𝑧 = 𝑋 → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑋↑𝑘))) | 
| 6 | 5 | sumeq2sdv 11535 | 
. . . . . 6
⊢ (𝑧 = 𝑋 → Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘))) | 
| 7 |   | plycoeid3.x | 
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) | 
| 8 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑞 = 𝑘 → (𝐴‘𝑞) = (𝐴‘𝑘)) | 
| 9 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑞 = 𝑘 → (𝑋↑𝑞) = (𝑋↑𝑘)) | 
| 10 | 8, 9 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑞 = 𝑘 → ((𝐴‘𝑞) · (𝑋↑𝑞)) = ((𝐴‘𝑘) · (𝑋↑𝑘))) | 
| 11 | 10 | cbvsumv 11526 | 
. . . . . . 7
⊢
Σ𝑞 ∈
(0...𝐷)((𝐴‘𝑞) · (𝑋↑𝑞)) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘)) | 
| 12 |   | 0zd 9338 | 
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℤ) | 
| 13 |   | plycoeid3.d | 
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈
ℕ0) | 
| 14 | 13 | nn0zd 9446 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℤ) | 
| 15 | 12, 14 | fzfigd 10523 | 
. . . . . . . 8
⊢ (𝜑 → (0...𝐷) ∈ Fin) | 
| 16 |   | plycoeid3.a | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 17 | 16 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → 𝐴:ℕ0⟶ℂ) | 
| 18 |   | elfznn0 10189 | 
. . . . . . . . . . 11
⊢ (𝑞 ∈ (0...𝐷) → 𝑞 ∈ ℕ0) | 
| 19 | 18 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → 𝑞 ∈ ℕ0) | 
| 20 | 17, 19 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → (𝐴‘𝑞) ∈ ℂ) | 
| 21 | 7 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → 𝑋 ∈ ℂ) | 
| 22 | 21, 19 | expcld 10765 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → (𝑋↑𝑞) ∈ ℂ) | 
| 23 | 20, 22 | mulcld 8047 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → ((𝐴‘𝑞) · (𝑋↑𝑞)) ∈ ℂ) | 
| 24 | 15, 23 | fsumcl 11565 | 
. . . . . . 7
⊢ (𝜑 → Σ𝑞 ∈ (0...𝐷)((𝐴‘𝑞) · (𝑋↑𝑞)) ∈ ℂ) | 
| 25 | 11, 24 | eqeltrrid 2284 | 
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘)) ∈ ℂ) | 
| 26 | 3, 6, 7, 25 | fvmptd3 5655 | 
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑋) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘))) | 
| 27 | 2, 26 | eqtrd 2229 | 
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘))) | 
| 28 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑘 = 𝑟 → (𝐴‘𝑘) = (𝐴‘𝑟)) | 
| 29 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑘 = 𝑟 → (𝑋↑𝑘) = (𝑋↑𝑟)) | 
| 30 | 28, 29 | oveq12d 5940 | 
. . . . 5
⊢ (𝑘 = 𝑟 → ((𝐴‘𝑘) · (𝑋↑𝑘)) = ((𝐴‘𝑟) · (𝑋↑𝑟))) | 
| 31 | 30 | cbvsumv 11526 | 
. . . 4
⊢
Σ𝑘 ∈
(0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘)) = Σ𝑟 ∈ (0...𝐷)((𝐴‘𝑟) · (𝑋↑𝑟)) | 
| 32 | 27, 31 | eqtrdi 2245 | 
. . 3
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑟 ∈ (0...𝐷)((𝐴‘𝑟) · (𝑋↑𝑟))) | 
| 33 |   | plycoeid3.m | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷)) | 
| 34 |   | fzss2 10139 | 
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝐷) → (0...𝐷) ⊆ (0...𝑀)) | 
| 35 | 33, 34 | syl 14 | 
. . . 4
⊢ (𝜑 → (0...𝐷) ⊆ (0...𝑀)) | 
| 36 | 16 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → 𝐴:ℕ0⟶ℂ) | 
| 37 |   | elfznn0 10189 | 
. . . . . . 7
⊢ (𝑟 ∈ (0...𝐷) → 𝑟 ∈ ℕ0) | 
| 38 | 37 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → 𝑟 ∈ ℕ0) | 
| 39 | 36, 38 | ffvelcdmd 5698 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → (𝐴‘𝑟) ∈ ℂ) | 
| 40 | 7 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → 𝑋 ∈ ℂ) | 
| 41 | 40, 38 | expcld 10765 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → (𝑋↑𝑟) ∈ ℂ) | 
| 42 | 39, 41 | mulcld 8047 | 
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → ((𝐴‘𝑟) · (𝑋↑𝑟)) ∈ ℂ) | 
| 43 |   | eldifn 3286 | 
. . . . . . . . . 10
⊢ (𝑟 ∈ ((0...𝑀) ∖ (0...𝐷)) → ¬ 𝑟 ∈ (0...𝐷)) | 
| 44 | 43 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ¬ 𝑟 ∈ (0...𝐷)) | 
| 45 |   | eldifi 3285 | 
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ((0...𝑀) ∖ (0...𝐷)) → 𝑟 ∈ (0...𝑀)) | 
| 46 | 45 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ (0...𝑀)) | 
| 47 |   | elfznn0 10189 | 
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ (0...𝑀) → 𝑟 ∈ ℕ0) | 
| 48 | 46, 47 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ ℕ0) | 
| 49 |   | nn0split 10211 | 
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ ℕ0
→ ℕ0 = ((0...𝐷) ∪ (ℤ≥‘(𝐷 + 1)))) | 
| 50 | 13, 49 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ0 =
((0...𝐷) ∪
(ℤ≥‘(𝐷 + 1)))) | 
| 51 | 50 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ℕ0 = ((0...𝐷) ∪
(ℤ≥‘(𝐷 + 1)))) | 
| 52 | 48, 51 | eleqtrd 2275 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ ((0...𝐷) ∪ (ℤ≥‘(𝐷 + 1)))) | 
| 53 |   | elun 3304 | 
. . . . . . . . . . 11
⊢ (𝑟 ∈ ((0...𝐷) ∪ (ℤ≥‘(𝐷 + 1))) ↔ (𝑟 ∈ (0...𝐷) ∨ 𝑟 ∈ (ℤ≥‘(𝐷 + 1)))) | 
| 54 | 52, 53 | sylib 122 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑟 ∈ (0...𝐷) ∨ 𝑟 ∈ (ℤ≥‘(𝐷 + 1)))) | 
| 55 | 54 | orcomd 730 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑟 ∈ (ℤ≥‘(𝐷 + 1)) ∨ 𝑟 ∈ (0...𝐷))) | 
| 56 | 44, 55 | ecased 1360 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ (ℤ≥‘(𝐷 + 1))) | 
| 57 |   | plycoeid3.z | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝐷 + 1))) = {0}) | 
| 58 |   | eqimss 3237 | 
. . . . . . . . . . 11
⊢ ((𝐴 “
(ℤ≥‘(𝐷 + 1))) = {0} → (𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0}) | 
| 59 | 57, 58 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0}) | 
| 60 | 16 | ffund 5411 | 
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐴) | 
| 61 |   | peano2nn0 9289 | 
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ℕ0
→ (𝐷 + 1) ∈
ℕ0) | 
| 62 | 13, 61 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷 + 1) ∈
ℕ0) | 
| 63 |   | nn0uz 9636 | 
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) | 
| 64 | 62, 63 | eleqtrdi 2289 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐷 + 1) ∈
(ℤ≥‘0)) | 
| 65 |   | uzss 9622 | 
. . . . . . . . . . . . . 14
⊢ ((𝐷 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘(𝐷 + 1)) ⊆
(ℤ≥‘0)) | 
| 66 | 64, 65 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘(𝐷 + 1)) ⊆
(ℤ≥‘0)) | 
| 67 | 66, 63 | sseqtrrdi 3232 | 
. . . . . . . . . . . 12
⊢ (𝜑 →
(ℤ≥‘(𝐷 + 1)) ⊆
ℕ0) | 
| 68 | 16 | fdmd 5414 | 
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐴 = ℕ0) | 
| 69 | 67, 68 | sseqtrrd 3222 | 
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(𝐷 + 1)) ⊆ dom 𝐴) | 
| 70 |   | funimass4 5611 | 
. . . . . . . . . . 11
⊢ ((Fun
𝐴 ∧
(ℤ≥‘(𝐷 + 1)) ⊆ dom 𝐴) → ((𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0} ↔ ∀𝑟 ∈
(ℤ≥‘(𝐷 + 1))(𝐴‘𝑟) ∈ {0})) | 
| 71 | 60, 69, 70 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0} ↔ ∀𝑟 ∈
(ℤ≥‘(𝐷 + 1))(𝐴‘𝑟) ∈ {0})) | 
| 72 | 59, 71 | mpbid 147 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑟 ∈ (ℤ≥‘(𝐷 + 1))(𝐴‘𝑟) ∈ {0}) | 
| 73 | 72 | r19.21bi 2585 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘(𝐷 + 1))) → (𝐴‘𝑟) ∈ {0}) | 
| 74 | 56, 73 | syldan 282 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝐴‘𝑟) ∈ {0}) | 
| 75 |   | elsni 3640 | 
. . . . . . 7
⊢ ((𝐴‘𝑟) ∈ {0} → (𝐴‘𝑟) = 0) | 
| 76 | 74, 75 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝐴‘𝑟) = 0) | 
| 77 | 76 | oveq1d 5937 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ((𝐴‘𝑟) · (𝑋↑𝑟)) = (0 · (𝑋↑𝑟))) | 
| 78 | 7 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑋 ∈ ℂ) | 
| 79 | 78, 48 | expcld 10765 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑋↑𝑟) ∈ ℂ) | 
| 80 | 79 | mul02d 8418 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (0 · (𝑋↑𝑟)) = 0) | 
| 81 | 77, 80 | eqtrd 2229 | 
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ((𝐴‘𝑟) · (𝑋↑𝑟)) = 0) | 
| 82 |   | elfzelz 10100 | 
. . . . . . 7
⊢ (𝑝 ∈ (0...𝑀) → 𝑝 ∈ ℤ) | 
| 83 | 82 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → 𝑝 ∈ ℤ) | 
| 84 |   | 0zd 9338 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → 0 ∈ ℤ) | 
| 85 | 14 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → 𝐷 ∈ ℤ) | 
| 86 |   | fzdcel 10115 | 
. . . . . 6
⊢ ((𝑝 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝐷 ∈
ℤ) → DECID 𝑝 ∈ (0...𝐷)) | 
| 87 | 83, 84, 85, 86 | syl3anc 1249 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → DECID 𝑝 ∈ (0...𝐷)) | 
| 88 | 87 | ralrimiva 2570 | 
. . . 4
⊢ (𝜑 → ∀𝑝 ∈ (0...𝑀)DECID 𝑝 ∈ (0...𝐷)) | 
| 89 |   | eluzelz 9610 | 
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝐷) → 𝑀 ∈ ℤ) | 
| 90 | 33, 89 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 91 | 12, 90 | fzfigd 10523 | 
. . . 4
⊢ (𝜑 → (0...𝑀) ∈ Fin) | 
| 92 | 35, 42, 81, 88, 91 | fisumss 11557 | 
. . 3
⊢ (𝜑 → Σ𝑟 ∈ (0...𝐷)((𝐴‘𝑟) · (𝑋↑𝑟)) = Σ𝑟 ∈ (0...𝑀)((𝐴‘𝑟) · (𝑋↑𝑟))) | 
| 93 | 32, 92 | eqtrd 2229 | 
. 2
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑟 ∈ (0...𝑀)((𝐴‘𝑟) · (𝑋↑𝑟))) | 
| 94 |   | fveq2 5558 | 
. . . 4
⊢ (𝑟 = 𝑗 → (𝐴‘𝑟) = (𝐴‘𝑗)) | 
| 95 |   | oveq2 5930 | 
. . . 4
⊢ (𝑟 = 𝑗 → (𝑋↑𝑟) = (𝑋↑𝑗)) | 
| 96 | 94, 95 | oveq12d 5940 | 
. . 3
⊢ (𝑟 = 𝑗 → ((𝐴‘𝑟) · (𝑋↑𝑟)) = ((𝐴‘𝑗) · (𝑋↑𝑗))) | 
| 97 | 96 | cbvsumv 11526 | 
. 2
⊢
Σ𝑟 ∈
(0...𝑀)((𝐴‘𝑟) · (𝑋↑𝑟)) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗)) | 
| 98 | 93, 97 | eqtrdi 2245 | 
1
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) |