| Step | Hyp | Ref
| Expression |
| 1 | | plycoeid3.f |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 2 | 1 | fveq1d 5563 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑋) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑋)) |
| 3 | | eqid 2196 |
. . . . . 6
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 4 | | oveq1 5932 |
. . . . . . . 8
⊢ (𝑧 = 𝑋 → (𝑧↑𝑘) = (𝑋↑𝑘)) |
| 5 | 4 | oveq2d 5941 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑋↑𝑘))) |
| 6 | 5 | sumeq2sdv 11552 |
. . . . . 6
⊢ (𝑧 = 𝑋 → Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘))) |
| 7 | | plycoeid3.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 8 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑞 = 𝑘 → (𝐴‘𝑞) = (𝐴‘𝑘)) |
| 9 | | oveq2 5933 |
. . . . . . . . 9
⊢ (𝑞 = 𝑘 → (𝑋↑𝑞) = (𝑋↑𝑘)) |
| 10 | 8, 9 | oveq12d 5943 |
. . . . . . . 8
⊢ (𝑞 = 𝑘 → ((𝐴‘𝑞) · (𝑋↑𝑞)) = ((𝐴‘𝑘) · (𝑋↑𝑘))) |
| 11 | 10 | cbvsumv 11543 |
. . . . . . 7
⊢
Σ𝑞 ∈
(0...𝐷)((𝐴‘𝑞) · (𝑋↑𝑞)) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘)) |
| 12 | | 0zd 9355 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℤ) |
| 13 | | plycoeid3.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
| 14 | 13 | nn0zd 9463 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℤ) |
| 15 | 12, 14 | fzfigd 10540 |
. . . . . . . 8
⊢ (𝜑 → (0...𝐷) ∈ Fin) |
| 16 | | plycoeid3.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 17 | 16 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → 𝐴:ℕ0⟶ℂ) |
| 18 | | elfznn0 10206 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (0...𝐷) → 𝑞 ∈ ℕ0) |
| 19 | 18 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → 𝑞 ∈ ℕ0) |
| 20 | 17, 19 | ffvelcdmd 5701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → (𝐴‘𝑞) ∈ ℂ) |
| 21 | 7 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → 𝑋 ∈ ℂ) |
| 22 | 21, 19 | expcld 10782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → (𝑋↑𝑞) ∈ ℂ) |
| 23 | 20, 22 | mulcld 8064 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ (0...𝐷)) → ((𝐴‘𝑞) · (𝑋↑𝑞)) ∈ ℂ) |
| 24 | 15, 23 | fsumcl 11582 |
. . . . . . 7
⊢ (𝜑 → Σ𝑞 ∈ (0...𝐷)((𝐴‘𝑞) · (𝑋↑𝑞)) ∈ ℂ) |
| 25 | 11, 24 | eqeltrrid 2284 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘)) ∈ ℂ) |
| 26 | 3, 6, 7, 25 | fvmptd3 5658 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑋) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘))) |
| 27 | 2, 26 | eqtrd 2229 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘))) |
| 28 | | fveq2 5561 |
. . . . . 6
⊢ (𝑘 = 𝑟 → (𝐴‘𝑘) = (𝐴‘𝑟)) |
| 29 | | oveq2 5933 |
. . . . . 6
⊢ (𝑘 = 𝑟 → (𝑋↑𝑘) = (𝑋↑𝑟)) |
| 30 | 28, 29 | oveq12d 5943 |
. . . . 5
⊢ (𝑘 = 𝑟 → ((𝐴‘𝑘) · (𝑋↑𝑘)) = ((𝐴‘𝑟) · (𝑋↑𝑟))) |
| 31 | 30 | cbvsumv 11543 |
. . . 4
⊢
Σ𝑘 ∈
(0...𝐷)((𝐴‘𝑘) · (𝑋↑𝑘)) = Σ𝑟 ∈ (0...𝐷)((𝐴‘𝑟) · (𝑋↑𝑟)) |
| 32 | 27, 31 | eqtrdi 2245 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑟 ∈ (0...𝐷)((𝐴‘𝑟) · (𝑋↑𝑟))) |
| 33 | | plycoeid3.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐷)) |
| 34 | | fzss2 10156 |
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝐷) → (0...𝐷) ⊆ (0...𝑀)) |
| 35 | 33, 34 | syl 14 |
. . . 4
⊢ (𝜑 → (0...𝐷) ⊆ (0...𝑀)) |
| 36 | 16 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → 𝐴:ℕ0⟶ℂ) |
| 37 | | elfznn0 10206 |
. . . . . . 7
⊢ (𝑟 ∈ (0...𝐷) → 𝑟 ∈ ℕ0) |
| 38 | 37 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → 𝑟 ∈ ℕ0) |
| 39 | 36, 38 | ffvelcdmd 5701 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → (𝐴‘𝑟) ∈ ℂ) |
| 40 | 7 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → 𝑋 ∈ ℂ) |
| 41 | 40, 38 | expcld 10782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → (𝑋↑𝑟) ∈ ℂ) |
| 42 | 39, 41 | mulcld 8064 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐷)) → ((𝐴‘𝑟) · (𝑋↑𝑟)) ∈ ℂ) |
| 43 | | eldifn 3287 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ((0...𝑀) ∖ (0...𝐷)) → ¬ 𝑟 ∈ (0...𝐷)) |
| 44 | 43 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ¬ 𝑟 ∈ (0...𝐷)) |
| 45 | | eldifi 3286 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ((0...𝑀) ∖ (0...𝐷)) → 𝑟 ∈ (0...𝑀)) |
| 46 | 45 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ (0...𝑀)) |
| 47 | | elfznn0 10206 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ (0...𝑀) → 𝑟 ∈ ℕ0) |
| 48 | 46, 47 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ ℕ0) |
| 49 | | nn0split 10228 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ ℕ0
→ ℕ0 = ((0...𝐷) ∪ (ℤ≥‘(𝐷 + 1)))) |
| 50 | 13, 49 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ0 =
((0...𝐷) ∪
(ℤ≥‘(𝐷 + 1)))) |
| 51 | 50 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ℕ0 = ((0...𝐷) ∪
(ℤ≥‘(𝐷 + 1)))) |
| 52 | 48, 51 | eleqtrd 2275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ ((0...𝐷) ∪ (ℤ≥‘(𝐷 + 1)))) |
| 53 | | elun 3305 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ((0...𝐷) ∪ (ℤ≥‘(𝐷 + 1))) ↔ (𝑟 ∈ (0...𝐷) ∨ 𝑟 ∈ (ℤ≥‘(𝐷 + 1)))) |
| 54 | 52, 53 | sylib 122 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑟 ∈ (0...𝐷) ∨ 𝑟 ∈ (ℤ≥‘(𝐷 + 1)))) |
| 55 | 54 | orcomd 730 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑟 ∈ (ℤ≥‘(𝐷 + 1)) ∨ 𝑟 ∈ (0...𝐷))) |
| 56 | 44, 55 | ecased 1360 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑟 ∈ (ℤ≥‘(𝐷 + 1))) |
| 57 | | plycoeid3.z |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝐷 + 1))) = {0}) |
| 58 | | eqimss 3238 |
. . . . . . . . . . 11
⊢ ((𝐴 “
(ℤ≥‘(𝐷 + 1))) = {0} → (𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0}) |
| 59 | 57, 58 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0}) |
| 60 | 16 | ffund 5414 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐴) |
| 61 | | peano2nn0 9306 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ℕ0
→ (𝐷 + 1) ∈
ℕ0) |
| 62 | 13, 61 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷 + 1) ∈
ℕ0) |
| 63 | | nn0uz 9653 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) |
| 64 | 62, 63 | eleqtrdi 2289 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐷 + 1) ∈
(ℤ≥‘0)) |
| 65 | | uzss 9639 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘(𝐷 + 1)) ⊆
(ℤ≥‘0)) |
| 66 | 64, 65 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘(𝐷 + 1)) ⊆
(ℤ≥‘0)) |
| 67 | 66, 63 | sseqtrrdi 3233 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(ℤ≥‘(𝐷 + 1)) ⊆
ℕ0) |
| 68 | 16 | fdmd 5417 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐴 = ℕ0) |
| 69 | 67, 68 | sseqtrrd 3223 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(𝐷 + 1)) ⊆ dom 𝐴) |
| 70 | | funimass4 5614 |
. . . . . . . . . . 11
⊢ ((Fun
𝐴 ∧
(ℤ≥‘(𝐷 + 1)) ⊆ dom 𝐴) → ((𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0} ↔ ∀𝑟 ∈
(ℤ≥‘(𝐷 + 1))(𝐴‘𝑟) ∈ {0})) |
| 71 | 60, 69, 70 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 “
(ℤ≥‘(𝐷 + 1))) ⊆ {0} ↔ ∀𝑟 ∈
(ℤ≥‘(𝐷 + 1))(𝐴‘𝑟) ∈ {0})) |
| 72 | 59, 71 | mpbid 147 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑟 ∈ (ℤ≥‘(𝐷 + 1))(𝐴‘𝑟) ∈ {0}) |
| 73 | 72 | r19.21bi 2585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘(𝐷 + 1))) → (𝐴‘𝑟) ∈ {0}) |
| 74 | 56, 73 | syldan 282 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝐴‘𝑟) ∈ {0}) |
| 75 | | elsni 3641 |
. . . . . . 7
⊢ ((𝐴‘𝑟) ∈ {0} → (𝐴‘𝑟) = 0) |
| 76 | 74, 75 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝐴‘𝑟) = 0) |
| 77 | 76 | oveq1d 5940 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ((𝐴‘𝑟) · (𝑋↑𝑟)) = (0 · (𝑋↑𝑟))) |
| 78 | 7 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → 𝑋 ∈ ℂ) |
| 79 | 78, 48 | expcld 10782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (𝑋↑𝑟) ∈ ℂ) |
| 80 | 79 | mul02d 8435 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → (0 · (𝑋↑𝑟)) = 0) |
| 81 | 77, 80 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ((0...𝑀) ∖ (0...𝐷))) → ((𝐴‘𝑟) · (𝑋↑𝑟)) = 0) |
| 82 | | elfzelz 10117 |
. . . . . . 7
⊢ (𝑝 ∈ (0...𝑀) → 𝑝 ∈ ℤ) |
| 83 | 82 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → 𝑝 ∈ ℤ) |
| 84 | | 0zd 9355 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → 0 ∈ ℤ) |
| 85 | 14 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → 𝐷 ∈ ℤ) |
| 86 | | fzdcel 10132 |
. . . . . 6
⊢ ((𝑝 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝐷 ∈
ℤ) → DECID 𝑝 ∈ (0...𝐷)) |
| 87 | 83, 84, 85, 86 | syl3anc 1249 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝑀)) → DECID 𝑝 ∈ (0...𝐷)) |
| 88 | 87 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑝 ∈ (0...𝑀)DECID 𝑝 ∈ (0...𝐷)) |
| 89 | | eluzelz 9627 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝐷) → 𝑀 ∈ ℤ) |
| 90 | 33, 89 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 91 | 12, 90 | fzfigd 10540 |
. . . 4
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
| 92 | 35, 42, 81, 88, 91 | fisumss 11574 |
. . 3
⊢ (𝜑 → Σ𝑟 ∈ (0...𝐷)((𝐴‘𝑟) · (𝑋↑𝑟)) = Σ𝑟 ∈ (0...𝑀)((𝐴‘𝑟) · (𝑋↑𝑟))) |
| 93 | 32, 92 | eqtrd 2229 |
. 2
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑟 ∈ (0...𝑀)((𝐴‘𝑟) · (𝑋↑𝑟))) |
| 94 | | fveq2 5561 |
. . . 4
⊢ (𝑟 = 𝑗 → (𝐴‘𝑟) = (𝐴‘𝑗)) |
| 95 | | oveq2 5933 |
. . . 4
⊢ (𝑟 = 𝑗 → (𝑋↑𝑟) = (𝑋↑𝑗)) |
| 96 | 94, 95 | oveq12d 5943 |
. . 3
⊢ (𝑟 = 𝑗 → ((𝐴‘𝑟) · (𝑋↑𝑟)) = ((𝐴‘𝑗) · (𝑋↑𝑗))) |
| 97 | 96 | cbvsumv 11543 |
. 2
⊢
Σ𝑟 ∈
(0...𝑀)((𝐴‘𝑟) · (𝑋↑𝑟)) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗)) |
| 98 | 93, 97 | eqtrdi 2245 |
1
⊢ (𝜑 → (𝐹‘𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴‘𝑗) · (𝑋↑𝑗))) |