ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsbas GIF version

Theorem prdsbas 13275
Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
Assertion
Ref Expression
prdsbas (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑃   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbas
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . 2 𝑃 = (𝑆Xs𝑅)
2 prdsbas.s . 2 (𝜑𝑆𝑉)
3 prdsbas.r . 2 (𝜑𝑅𝑊)
4 prdsbas.b . 2 𝐵 = (Base‘𝑃)
5 baseid 13052 . 2 Base = Slot (Base‘ndx)
6 basendxnn 13054 . 2 (Base‘ndx) ∈ ℕ
7 prdsbas.i . . . 4 (𝜑 → dom 𝑅 = 𝐼)
8 dmexg 4964 . . . . 5 (𝑅𝑊 → dom 𝑅 ∈ V)
93, 8syl 14 . . . 4 (𝜑 → dom 𝑅 ∈ V)
107, 9eqeltrrd 2287 . . 3 (𝜑𝐼 ∈ V)
11 basfn 13057 . . . . 5 Base Fn V
12 vex 2782 . . . . . 6 𝑥 ∈ V
13 fvexg 5622 . . . . . 6 ((𝑅𝑊𝑥 ∈ V) → (𝑅𝑥) ∈ V)
143, 12, 13sylancl 413 . . . . 5 (𝜑 → (𝑅𝑥) ∈ V)
15 funfvex 5620 . . . . . 6 ((Fun Base ∧ (𝑅𝑥) ∈ dom Base) → (Base‘(𝑅𝑥)) ∈ V)
1615funfni 5399 . . . . 5 ((Base Fn V ∧ (𝑅𝑥) ∈ V) → (Base‘(𝑅𝑥)) ∈ V)
1711, 14, 16sylancr 414 . . . 4 (𝜑 → (Base‘(𝑅𝑥)) ∈ V)
1817ralrimivw 2584 . . 3 (𝜑 → ∀𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
19 ixpexgg 6839 . . 3 ((𝐼 ∈ V ∧ ∀𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V) → X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
2010, 18, 19syl2anc 411 . 2 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
21 snsstp1 3797 . . . . 5 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩}
22 ssun1 3347 . . . . 5 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
2321, 22sstri 3213 . . . 4 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
24 ssun1 3347 . . . 4 ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
2523, 24sstri 3213 . . 3 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
26 eqid 2209 . . . 4 (Base‘𝑆) = (Base‘𝑆)
27 eqidd 2210 . . . 4 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) = X𝑥𝐼 (Base‘(𝑅𝑥)))
28 eqidd 2210 . . . 4 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
29 eqidd 2210 . . . 4 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
30 eqidd 2210 . . . 4 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
31 eqidd 2210 . . . 4 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
32 eqidd 2210 . . . 4 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
33 eqidd 2210 . . . 4 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
34 eqidd 2210 . . . 4 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
35 eqidd 2210 . . . 4 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
36 eqidd 2210 . . . 4 (𝜑 → (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
371, 26, 7, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 2, 3prdsval 13272 . . 3 (𝜑𝑃 = (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
3825, 37sseqtrrid 3255 . 2 (𝜑 → {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ 𝑃)
391, 2, 3, 4, 5, 6, 20, 38prdsbaslemss 13273 1 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  Vcvv 2779  cun 3175  wss 3177  {csn 3646  {cpr 3647  {ctp 3648  cop 3649   class class class wbr 4062  {copab 4123  cmpt 4124   × cxp 4694  dom cdm 4696  ran crn 4697  ccom 4700   Fn wfn 5289  cfv 5294  (class class class)co 5974  cmpo 5976  1st c1st 6254  2nd c2nd 6255  Xcixp 6815  supcsup 7117  0cc0 7967  *cxr 8148   < clt 8149  ndxcnx 12995  Basecbs 12998  +gcplusg 13076  .rcmulr 13077  Scalarcsca 13079   ·𝑠 cvsca 13080  ·𝑖cip 13081  TopSetcts 13082  lecple 13083  distcds 13085  Hom chom 13087  compcco 13088  TopOpenctopn 13239  tcpt 13254   Σg cgsu 13256  Xscprds 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-fz 10173  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-hom 13100  df-cco 13101  df-rest 13240  df-topn 13241  df-topgen 13259  df-pt 13260  df-prds 13266
This theorem is referenced by:  prdsplusg  13276  prdsmulr  13277  prdsbas2  13278  pwsbas  13291
  Copyright terms: Public domain W3C validator