| Step | Hyp | Ref
| Expression |
| 1 | | prdsbas.p |
. 2
⊢ 𝑃 = (𝑆Xs𝑅) |
| 2 | | prdsbas.s |
. 2
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 3 | | prdsbas.r |
. 2
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| 4 | | prdsbas.b |
. 2
⊢ 𝐵 = (Base‘𝑃) |
| 5 | | baseid 12757 |
. 2
⊢ Base =
Slot (Base‘ndx) |
| 6 | | basendxnn 12759 |
. 2
⊢
(Base‘ndx) ∈ ℕ |
| 7 | | prdsbas.i |
. . . 4
⊢ (𝜑 → dom 𝑅 = 𝐼) |
| 8 | | dmexg 4931 |
. . . . 5
⊢ (𝑅 ∈ 𝑊 → dom 𝑅 ∈ V) |
| 9 | 3, 8 | syl 14 |
. . . 4
⊢ (𝜑 → dom 𝑅 ∈ V) |
| 10 | 7, 9 | eqeltrrd 2274 |
. . 3
⊢ (𝜑 → 𝐼 ∈ V) |
| 11 | | basfn 12761 |
. . . . 5
⊢ Base Fn
V |
| 12 | | vex 2766 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 13 | | fvexg 5580 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑊 ∧ 𝑥 ∈ V) → (𝑅‘𝑥) ∈ V) |
| 14 | 3, 12, 13 | sylancl 413 |
. . . . 5
⊢ (𝜑 → (𝑅‘𝑥) ∈ V) |
| 15 | | funfvex 5578 |
. . . . . 6
⊢ ((Fun
Base ∧ (𝑅‘𝑥) ∈ dom Base) →
(Base‘(𝑅‘𝑥)) ∈ V) |
| 16 | 15 | funfni 5361 |
. . . . 5
⊢ ((Base Fn
V ∧ (𝑅‘𝑥) ∈ V) →
(Base‘(𝑅‘𝑥)) ∈ V) |
| 17 | 11, 14, 16 | sylancr 414 |
. . . 4
⊢ (𝜑 → (Base‘(𝑅‘𝑥)) ∈ V) |
| 18 | 17 | ralrimivw 2571 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
| 19 | | ixpexgg 6790 |
. . 3
⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V) → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
| 20 | 10, 18, 19 | syl2anc 411 |
. 2
⊢ (𝜑 → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
| 21 | | snsstp1 3773 |
. . . . 5
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉} ⊆ {〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} |
| 22 | | ssun1 3327 |
. . . . 5
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ⊆ ({〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
| 23 | 21, 22 | sstri 3193 |
. . . 4
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉} ⊆ ({〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
| 24 | | ssun1 3327 |
. . . 4
⊢
({〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ⊆ (({〈(Base‘ndx),
X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
| 25 | 23, 24 | sstri 3193 |
. . 3
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉} ⊆ (({〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
| 26 | | eqid 2196 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 27 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
| 28 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 29 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 30 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 31 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
| 32 | | eqidd 2197 |
. . . 4
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen
∘ 𝑅))) |
| 33 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
| 34 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
| 35 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 36 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
| 37 | 1, 26, 7, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 2, 3 | prdsval 12975 |
. . 3
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
| 38 | 25, 37 | sseqtrrid 3235 |
. 2
⊢ (𝜑 → {〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉} ⊆ 𝑃) |
| 39 | 1, 2, 3, 4, 5, 6, 20, 38 | prdsbaslemss 12976 |
1
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |