ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsbas GIF version

Theorem pwsbas 13168
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsbas.y 𝑌 = (𝑅s 𝐼)
pwsbas.f 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
pwsbas ((𝑅𝑉𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))

Proof of Theorem pwsbas
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsbas.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2206 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 13167 . . 3 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 5587 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2206 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 scaslid 13029 . . . . . 6 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
76slotex 12903 . . . . 5 (𝑅𝑉 → (Scalar‘𝑅) ∈ V)
87adantr 276 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
9 simpr 110 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
10 snexg 4232 . . . . . 6 (𝑅𝑉 → {𝑅} ∈ V)
1110adantr 276 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ∈ V)
12 xpexg 4793 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
139, 11, 12syl2anc 411 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
14 eqid 2206 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
15 snmg 3752 . . . . . 6 (𝑅𝑉 → ∃𝑤 𝑤 ∈ {𝑅})
16 dmxpm 4903 . . . . . 6 (∃𝑤 𝑤 ∈ {𝑅} → dom (𝐼 × {𝑅}) = 𝐼)
1715, 16syl 14 . . . . 5 (𝑅𝑉 → dom (𝐼 × {𝑅}) = 𝐼)
1817adantr 276 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
195, 8, 13, 14, 18prdsbas 13152 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)))
20 fvconst2g 5805 . . . . . . 7 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2120fveq2d 5587 . . . . . 6 ((𝑅𝑉𝑥𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
2221ralrimiva 2580 . . . . 5 (𝑅𝑉 → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
2322adantr 276 . . . 4 ((𝑅𝑉𝐼𝑊) → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
24 ixpeq2 6806 . . . 4 (∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2523, 24syl 14 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2619, 25eqtrd 2239 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘𝑅))
27 basfn 12934 . . . . . 6 Base Fn V
28 elex 2784 . . . . . 6 (𝑅𝑉𝑅 ∈ V)
29 funfvex 5600 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3029funfni 5381 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3127, 28, 30sylancr 414 . . . . 5 (𝑅𝑉 → (Base‘𝑅) ∈ V)
3231adantr 276 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑅) ∈ V)
33 ixpconstg 6801 . . . 4 ((𝐼𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼))
349, 32, 33syl2anc 411 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼))
35 pwsbas.f . . . 4 𝐵 = (Base‘𝑅)
3635oveq1i 5961 . . 3 (𝐵𝑚 𝐼) = ((Base‘𝑅) ↑𝑚 𝐼)
3734, 36eqtr4di 2257 . 2 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = (𝐵𝑚 𝐼))
384, 26, 373eqtrrd 2244 1 ((𝑅𝑉𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  wral 2485  Vcvv 2773  {csn 3634   × cxp 4677  dom cdm 4679   Fn wfn 5271  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  Xcixp 6792  Basecbs 12876  Scalarcsca 12956  Xscprds 13141  s cpws 13142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-hom 12977  df-cco 12978  df-rest 13117  df-topn 13118  df-topgen 13136  df-pt 13137  df-prds 13143  df-pws 13166
This theorem is referenced by:  pwselbasb  13169  pwssnf1o  13174  psrgrp  14491
  Copyright terms: Public domain W3C validator