| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwsbas | GIF version | ||
| Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| pwsbas | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑𝑚 𝐼) = (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | eqid 2229 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 3 | 1, 2 | pwsval 13332 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 4 | 3 | fveq2d 5633 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 5 | eqid 2229 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 6 | scaslid 13194 | . . . . . 6 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 7 | 6 | slotex 13067 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) ∈ V) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) ∈ V) |
| 9 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
| 10 | snexg 4268 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → {𝑅} ∈ V) | |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑅} ∈ V) |
| 12 | xpexg 4833 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V) | |
| 13 | 9, 11, 12 | syl2anc 411 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑅}) ∈ V) |
| 14 | eqid 2229 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 15 | snmg 3785 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ∃𝑤 𝑤 ∈ {𝑅}) | |
| 16 | dmxpm 4944 | . . . . . 6 ⊢ (∃𝑤 𝑤 ∈ {𝑅} → dom (𝐼 × {𝑅}) = 𝐼) | |
| 17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → dom (𝐼 × {𝑅}) = 𝐼) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → dom (𝐼 × {𝑅}) = 𝐼) |
| 19 | 5, 8, 13, 14, 18 | prdsbas 13317 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥))) |
| 20 | fvconst2g 5857 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 21 | 20 | fveq2d 5633 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 22 | 21 | ralrimiva 2603 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 23 | 22 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 24 | ixpeq2 6867 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) | |
| 25 | 23, 24 | syl 14 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
| 26 | 19, 25 | eqtrd 2262 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
| 27 | basfn 13099 | . . . . . 6 ⊢ Base Fn V | |
| 28 | elex 2811 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 29 | funfvex 5646 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 30 | 29 | funfni 5423 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 31 | 27, 28, 30 | sylancr 414 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) ∈ V) |
| 32 | 31 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑅) ∈ V) |
| 33 | ixpconstg 6862 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼)) | |
| 34 | 9, 32, 33 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼)) |
| 35 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 36 | 35 | oveq1i 6017 | . . 3 ⊢ (𝐵 ↑𝑚 𝐼) = ((Base‘𝑅) ↑𝑚 𝐼) |
| 37 | 34, 36 | eqtr4di 2280 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = (𝐵 ↑𝑚 𝐼)) |
| 38 | 4, 26, 37 | 3eqtrrd 2267 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑𝑚 𝐼) = (Base‘𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 {csn 3666 × cxp 4717 dom cdm 4719 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 Xcixp 6853 Basecbs 13040 Scalarcsca 13121 Xscprds 13306 ↑s cpws 13307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-ixp 6854 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-fz 10213 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-hom 13142 df-cco 13143 df-rest 13282 df-topn 13283 df-topgen 13301 df-pt 13302 df-prds 13308 df-pws 13331 |
| This theorem is referenced by: pwselbasb 13334 pwssnf1o 13339 psrgrp 14657 |
| Copyright terms: Public domain | W3C validator |