| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwsbas | GIF version | ||
| Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| pwsbas | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑𝑚 𝐼) = (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | eqid 2209 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 3 | 1, 2 | pwsval 13290 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 4 | 3 | fveq2d 5607 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 5 | eqid 2209 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 6 | scaslid 13152 | . . . . . 6 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 7 | 6 | slotex 13025 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) ∈ V) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) ∈ V) |
| 9 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
| 10 | snexg 4247 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → {𝑅} ∈ V) | |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑅} ∈ V) |
| 12 | xpexg 4810 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V) | |
| 13 | 9, 11, 12 | syl2anc 411 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑅}) ∈ V) |
| 14 | eqid 2209 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 15 | snmg 3764 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ∃𝑤 𝑤 ∈ {𝑅}) | |
| 16 | dmxpm 4920 | . . . . . 6 ⊢ (∃𝑤 𝑤 ∈ {𝑅} → dom (𝐼 × {𝑅}) = 𝐼) | |
| 17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → dom (𝐼 × {𝑅}) = 𝐼) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → dom (𝐼 × {𝑅}) = 𝐼) |
| 19 | 5, 8, 13, 14, 18 | prdsbas 13275 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥))) |
| 20 | fvconst2g 5826 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 21 | 20 | fveq2d 5607 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 22 | 21 | ralrimiva 2583 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 23 | 22 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 24 | ixpeq2 6829 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) | |
| 25 | 23, 24 | syl 14 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
| 26 | 19, 25 | eqtrd 2242 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
| 27 | basfn 13057 | . . . . . 6 ⊢ Base Fn V | |
| 28 | elex 2791 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 29 | funfvex 5620 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 30 | 29 | funfni 5399 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 31 | 27, 28, 30 | sylancr 414 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) ∈ V) |
| 32 | 31 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑅) ∈ V) |
| 33 | ixpconstg 6824 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼)) | |
| 34 | 9, 32, 33 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼)) |
| 35 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 36 | 35 | oveq1i 5984 | . . 3 ⊢ (𝐵 ↑𝑚 𝐼) = ((Base‘𝑅) ↑𝑚 𝐼) |
| 37 | 34, 36 | eqtr4di 2260 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = (𝐵 ↑𝑚 𝐼)) |
| 38 | 4, 26, 37 | 3eqtrrd 2247 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑𝑚 𝐼) = (Base‘𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 {csn 3646 × cxp 4694 dom cdm 4696 Fn wfn 5289 ‘cfv 5294 (class class class)co 5974 ↑𝑚 cmap 6765 Xcixp 6815 Basecbs 12998 Scalarcsca 13079 Xscprds 13264 ↑s cpws 13265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 df-rest 13240 df-topn 13241 df-topgen 13259 df-pt 13260 df-prds 13266 df-pws 13289 |
| This theorem is referenced by: pwselbasb 13292 pwssnf1o 13297 psrgrp 14614 |
| Copyright terms: Public domain | W3C validator |