| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trlreslem | GIF version | ||
| Description: Lemma for trlres 16108. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| Ref | Expression |
|---|---|
| trlres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlres.d | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
| Ref | Expression |
|---|---|
| trlreslem | ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlres.d | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | trlres.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 2 | trlf1 16106 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
| 4 | 1, 3 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
| 5 | trlres.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 6 | elfzouz2 10366 | . . . 4 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
| 7 | fzoss2 10378 | . . . 4 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
| 8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
| 9 | f1ores 5589 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) | |
| 10 | 4, 8, 9 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) |
| 11 | trlres.h | . . . 4 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
| 12 | trliswlk 16105 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 13 | 2 | wlkf 16051 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 14 | 1, 12, 13 | 3syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 15 | fzossfz 10370 | . . . . . 6 ⊢ (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) | |
| 16 | 15, 5 | sselid 3222 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
| 17 | pfxres 11221 | . . . . 5 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) | |
| 18 | 14, 16, 17 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
| 19 | 11, 18 | eqtrid 2274 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
| 20 | 11 | fveq2i 5632 | . . . . 5 ⊢ (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁)) |
| 21 | elfzofz 10367 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹))) | |
| 22 | 5, 21 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
| 23 | pfxlen 11225 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) | |
| 24 | 14, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
| 25 | 20, 24 | eqtrid 2274 | . . . 4 ⊢ (𝜑 → (♯‘𝐻) = 𝑁) |
| 26 | 25 | oveq2d 6023 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁)) |
| 27 | wrdf 11085 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 28 | fimass 5489 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) | |
| 29 | 13, 27, 28 | 3syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
| 30 | 1, 12, 29 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
| 31 | ssdmres 5027 | . . . 4 ⊢ ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) | |
| 32 | 30, 31 | sylib 122 | . . 3 ⊢ (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) |
| 33 | 19, 26, 32 | f1oeq123d 5568 | . 2 ⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))) |
| 34 | 10, 33 | mpbird 167 | 1 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 class class class wbr 4083 dom cdm 4719 ↾ cres 4721 “ cima 4722 ⟶wf 5314 –1-1→wf1 5315 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6007 0cc0 8007 ℤ≥cuz 9730 ...cfz 10212 ..^cfzo 10346 ♯chash 11005 Word cword 11079 prefix cpfx 11212 Vtxcvtx 15821 iEdgciedg 15822 Walkscwlks 16038 Trailsctrls 16099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-map 6805 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-fz 10213 df-fzo 10347 df-ihash 11006 df-word 11080 df-substr 11186 df-pfx 11213 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-wlks 16039 df-trls 16100 |
| This theorem is referenced by: trlres 16108 |
| Copyright terms: Public domain | W3C validator |