MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dividi Structured version   Visualization version   GIF version

Theorem dividi 11719
Description: A number divided by itself is one. (Contributed by NM, 9-Feb-1995.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
reccl.2 𝐴 ≠ 0
Assertion
Ref Expression
dividi (𝐴 / 𝐴) = 1

Proof of Theorem dividi
StepHypRef Expression
1 divclz.1 . 2 𝐴 ∈ ℂ
2 reccl.2 . 2 𝐴 ≠ 0
3 divid 11673 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)
41, 2, 3mp2an 689 1 (𝐴 / 𝐴) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  wne 2945  (class class class)co 7272  cc 10880  0cc0 10882  1c1 10883   / cdiv 11643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644
This theorem is referenced by:  2div2e1  12125  halfpm6th  12205  fldiv4p1lem1div2  13566  0.999...  15604  geoihalfsum  15605  efival  15872  ef01bndlem  15904  cos1bnd  15907  cos2bnd  15908  cos01gt0  15911  rpnnen2lem3  15936  rpnnen2lem11  15944  sincos4thpi  25681  tan4thpi  25682  sincos6thpi  25683  ang180lem1  25970  log2cnv  26105  log2tlbnd  26106  log2le1  26111  ppiub  26363  bposlem8  26450  2lgslem3c  26557  2lgslem3d  26558  2lgsoddprmlem3b  26570  dp2ltsuc  31169  ballotth  32513  quad3  33637  taupilem1  35501  acos1half  40179  areaquad  41056  lhe4.4ex1a  41929  stoweidlem26  43549  stoweidlem34  43557  stirlinglem3  43599  dirkercncflem1  43626  fourierdlem24  43654  fourierdlem95  43724  fourierdlem103  43732  fourierdlem104  43733
  Copyright terms: Public domain W3C validator