MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dividi Structured version   Visualization version   GIF version

Theorem dividi 11854
Description: A number divided by itself is one. (Contributed by NM, 9-Feb-1995.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
reccl.2 𝐴 ≠ 0
Assertion
Ref Expression
dividi (𝐴 / 𝐴) = 1

Proof of Theorem dividi
StepHypRef Expression
1 divclz.1 . 2 𝐴 ∈ ℂ
2 reccl.2 . 2 𝐴 ≠ 0
3 divid 11807 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)
41, 2, 3mp2an 692 1 (𝐴 / 𝐴) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   / cdiv 11774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775
This theorem is referenced by:  2div2e1  12261  halfpm6th  12343  fldiv4p1lem1div2  13739  0.999...  15788  geoihalfsum  15789  efival  16061  ef01bndlem  16093  cos1bnd  16096  cos2bnd  16097  cos01gt0  16100  rpnnen2lem3  16125  rpnnen2lem11  16133  sincos4thpi  26449  tan4thpi  26450  tan4thpiOLD  26451  sincos6thpi  26452  ang180lem1  26746  log2cnv  26881  log2tlbnd  26882  log2le1  26887  ppiub  27142  bposlem8  27229  2lgslem3c  27336  2lgslem3d  27337  2lgsoddprmlem3b  27349  dp2ltsuc  32866  ballotth  34551  quad3  35714  taupilem1  37365  acos1half  42461  areaquad  43319  lhe4.4ex1a  44432  stoweidlem26  46134  stoweidlem34  46142  stirlinglem3  46184  dirkercncflem1  46211  fourierdlem24  46239  fourierdlem95  46309  fourierdlem103  46317  fourierdlem104  46318
  Copyright terms: Public domain W3C validator