| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pythag | Structured version Visualization version GIF version | ||
| Description: Pythagorean theorem. Given three distinct points A, B, and C that form a right triangle (with the right angle at C), prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 26757), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB (the hypotenuse), and 𝑂 is the signed right angle m/_ BCA. We use the law of cosines lawcos 26759 to prove this, along with simple trigonometry facts like coshalfpi 26411 and cosneg 16091. (Contributed by David A. Wheeler, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| lawcos.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| lawcos.2 | ⊢ 𝑋 = (abs‘(𝐵 − 𝐶)) |
| lawcos.3 | ⊢ 𝑌 = (abs‘(𝐴 − 𝐶)) |
| lawcos.4 | ⊢ 𝑍 = (abs‘(𝐴 − 𝐵)) |
| lawcos.5 | ⊢ 𝑂 = ((𝐵 − 𝐶)𝐹(𝐴 − 𝐶)) |
| Ref | Expression |
|---|---|
| pythag | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lawcos.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 2 | lawcos.2 | . . . 4 ⊢ 𝑋 = (abs‘(𝐵 − 𝐶)) | |
| 3 | lawcos.3 | . . . 4 ⊢ 𝑌 = (abs‘(𝐴 − 𝐶)) | |
| 4 | lawcos.4 | . . . 4 ⊢ 𝑍 = (abs‘(𝐴 − 𝐵)) | |
| 5 | lawcos.5 | . . . 4 ⊢ 𝑂 = ((𝐵 − 𝐶)𝐹(𝐴 − 𝐶)) | |
| 6 | 1, 2, 3, 4, 5 | lawcos 26759 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂))))) |
| 7 | 6 | 3adant3 1132 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂))))) |
| 8 | elpri 4609 | . . . . . . . . 9 ⊢ (𝑂 ∈ {(π / 2), -(π / 2)} → (𝑂 = (π / 2) ∨ 𝑂 = -(π / 2))) | |
| 9 | fveq2 6840 | . . . . . . . . . . 11 ⊢ (𝑂 = (π / 2) → (cos‘𝑂) = (cos‘(π / 2))) | |
| 10 | coshalfpi 26411 | . . . . . . . . . . 11 ⊢ (cos‘(π / 2)) = 0 | |
| 11 | 9, 10 | eqtrdi 2780 | . . . . . . . . . 10 ⊢ (𝑂 = (π / 2) → (cos‘𝑂) = 0) |
| 12 | fveq2 6840 | . . . . . . . . . . 11 ⊢ (𝑂 = -(π / 2) → (cos‘𝑂) = (cos‘-(π / 2))) | |
| 13 | cosneghalfpi 26412 | . . . . . . . . . . 11 ⊢ (cos‘-(π / 2)) = 0 | |
| 14 | 12, 13 | eqtrdi 2780 | . . . . . . . . . 10 ⊢ (𝑂 = -(π / 2) → (cos‘𝑂) = 0) |
| 15 | 11, 14 | jaoi 857 | . . . . . . . . 9 ⊢ ((𝑂 = (π / 2) ∨ 𝑂 = -(π / 2)) → (cos‘𝑂) = 0) |
| 16 | 8, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑂 ∈ {(π / 2), -(π / 2)} → (cos‘𝑂) = 0) |
| 17 | 16 | 3ad2ant3 1135 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (cos‘𝑂) = 0) |
| 18 | 17 | oveq2d 7385 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = ((𝑋 · 𝑌) · 0)) |
| 19 | subcl 11396 | . . . . . . . . . . . . 13 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) | |
| 20 | 19 | 3adant1 1130 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) |
| 21 | 20 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐵 − 𝐶) ∈ ℂ) |
| 22 | 21 | abscld 15381 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵 − 𝐶)) ∈ ℝ) |
| 23 | 22 | recnd 11178 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵 − 𝐶)) ∈ ℂ) |
| 24 | 2, 23 | eqeltrid 2832 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑋 ∈ ℂ) |
| 25 | subcl 11396 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − 𝐶) ∈ ℂ) | |
| 26 | 25 | 3adant2 1131 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − 𝐶) ∈ ℂ) |
| 27 | 26 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐴 − 𝐶) ∈ ℂ) |
| 28 | 27 | abscld 15381 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴 − 𝐶)) ∈ ℝ) |
| 29 | 28 | recnd 11178 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴 − 𝐶)) ∈ ℂ) |
| 30 | 3, 29 | eqeltrid 2832 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑌 ∈ ℂ) |
| 31 | 24, 30 | mulcld 11170 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋 · 𝑌) ∈ ℂ) |
| 32 | 31 | mul01d 11349 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · 0) = 0) |
| 33 | 18, 32 | eqtrd 2764 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = 0) |
| 34 | 33 | oveq2d 7385 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · 0)) |
| 35 | 2t0e0 12326 | . . . 4 ⊢ (2 · 0) = 0 | |
| 36 | 34, 35 | eqtrdi 2780 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = 0) |
| 37 | 36 | oveq2d 7385 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = (((𝑋↑2) + (𝑌↑2)) − 0)) |
| 38 | 24 | sqcld 14085 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋↑2) ∈ ℂ) |
| 39 | 30 | sqcld 14085 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑌↑2) ∈ ℂ) |
| 40 | 38, 39 | addcld 11169 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋↑2) + (𝑌↑2)) ∈ ℂ) |
| 41 | 40 | subid1d 11498 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − 0) = ((𝑋↑2) + (𝑌↑2))) |
| 42 | 7, 37, 41 | 3eqtrd 2768 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 {cpr 4587 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℂcc 11042 0cc0 11044 + caddc 11047 · cmul 11049 − cmin 11381 -cneg 11382 / cdiv 11811 2c2 12217 ↑cexp 14002 ℑcim 15040 abscabs 15176 cosccos 16006 πcpi 16008 logclog 26496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-limc 25800 df-dv 25801 df-log 26498 |
| This theorem is referenced by: chordthmlem3 26777 |
| Copyright terms: Public domain | W3C validator |