Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythag Structured version   Visualization version   GIF version

Theorem pythag 24957
 Description: Pythagorean theorem. Given three distinct points A, B, and C that form a right triangle (with the right angle at C), prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 24954), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB (the hypotenuse), and 𝑂 is the signed right angle m/_ BCA. We use the law of cosines lawcos 24956 to prove this, along with simple trigonometry facts like coshalfpi 24621 and cosneg 15249. (Contributed by David A. Wheeler, 13-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
pythag (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pythag
StepHypRef Expression
1 lawcos.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 lawcos.2 . . . 4 𝑋 = (abs‘(𝐵𝐶))
3 lawcos.3 . . . 4 𝑌 = (abs‘(𝐴𝐶))
4 lawcos.4 . . . 4 𝑍 = (abs‘(𝐴𝐵))
5 lawcos.5 . . . 4 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
61, 2, 3, 4, 5lawcos 24956 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
763adant3 1168 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
8 elpri 4419 . . . . . . . . 9 (𝑂 ∈ {(π / 2), -(π / 2)} → (𝑂 = (π / 2) ∨ 𝑂 = -(π / 2)))
9 fveq2 6433 . . . . . . . . . . 11 (𝑂 = (π / 2) → (cos‘𝑂) = (cos‘(π / 2)))
10 coshalfpi 24621 . . . . . . . . . . 11 (cos‘(π / 2)) = 0
119, 10syl6eq 2877 . . . . . . . . . 10 (𝑂 = (π / 2) → (cos‘𝑂) = 0)
12 fveq2 6433 . . . . . . . . . . 11 (𝑂 = -(π / 2) → (cos‘𝑂) = (cos‘-(π / 2)))
13 cosneghalfpi 24622 . . . . . . . . . . 11 (cos‘-(π / 2)) = 0
1412, 13syl6eq 2877 . . . . . . . . . 10 (𝑂 = -(π / 2) → (cos‘𝑂) = 0)
1511, 14jaoi 890 . . . . . . . . 9 ((𝑂 = (π / 2) ∨ 𝑂 = -(π / 2)) → (cos‘𝑂) = 0)
168, 15syl 17 . . . . . . . 8 (𝑂 ∈ {(π / 2), -(π / 2)} → (cos‘𝑂) = 0)
17163ad2ant3 1171 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (cos‘𝑂) = 0)
1817oveq2d 6921 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = ((𝑋 · 𝑌) · 0))
19 subcl 10600 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
20193adant1 1166 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
21203ad2ant1 1169 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐵𝐶) ∈ ℂ)
2221abscld 14552 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵𝐶)) ∈ ℝ)
2322recnd 10385 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵𝐶)) ∈ ℂ)
242, 23syl5eqel 2910 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑋 ∈ ℂ)
25 subcl 10600 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
26253adant2 1167 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
27263ad2ant1 1169 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐴𝐶) ∈ ℂ)
2827abscld 14552 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴𝐶)) ∈ ℝ)
2928recnd 10385 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴𝐶)) ∈ ℂ)
303, 29syl5eqel 2910 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑌 ∈ ℂ)
3124, 30mulcld 10377 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋 · 𝑌) ∈ ℂ)
3231mul01d 10554 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · 0) = 0)
3318, 32eqtrd 2861 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = 0)
3433oveq2d 6921 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · 0))
35 2t0e0 11527 . . . 4 (2 · 0) = 0
3634, 35syl6eq 2877 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = 0)
3736oveq2d 6921 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = (((𝑋↑2) + (𝑌↑2)) − 0))
3824sqcld 13300 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋↑2) ∈ ℂ)
3930sqcld 13300 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑌↑2) ∈ ℂ)
4038, 39addcld 10376 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋↑2) + (𝑌↑2)) ∈ ℂ)
4140subid1d 10702 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − 0) = ((𝑋↑2) + (𝑌↑2)))
427, 37, 413eqtrd 2865 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∨ wo 880   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166   ≠ wne 2999   ∖ cdif 3795  {csn 4397  {cpr 4399  ‘cfv 6123  (class class class)co 6905   ↦ cmpt2 6907  ℂcc 10250  0cc0 10252   + caddc 10255   · cmul 10257   − cmin 10585  -cneg 10586   / cdiv 11009  2c2 11406  ↑cexp 13154  ℑcim 14215  abscabs 14351  cosccos 15167  πcpi 15169  logclog 24700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702 This theorem is referenced by:  chordthmlem3  24974
 Copyright terms: Public domain W3C validator