| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gcdaddmzz2nncomi | Structured version Visualization version GIF version | ||
| Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| gcdaddmzz2nncomi.1 | ⊢ 𝑀 ∈ ℕ |
| gcdaddmzz2nncomi.2 | ⊢ 𝑁 ∈ ℕ |
| gcdaddmzz2nncomi.3 | ⊢ 𝐾 ∈ ℤ |
| Ref | Expression |
|---|---|
| gcdaddmzz2nncomi | ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdaddmzz2nncomi.1 | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | gcdaddmzz2nncomi.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | gcdaddmzz2nncomi.3 | . . 3 ⊢ 𝐾 ∈ ℤ | |
| 4 | 1, 2, 3 | gcdaddmzz2nni 42027 | . 2 ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))) |
| 5 | 2 | nncni 12130 | . . . 4 ⊢ 𝑁 ∈ ℂ |
| 6 | zcn 12468 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
| 8 | 1 | nncni 12130 | . . . . 5 ⊢ 𝑀 ∈ ℂ |
| 9 | 7, 8 | mulcli 11114 | . . . 4 ⊢ (𝐾 · 𝑀) ∈ ℂ |
| 10 | 5, 9 | addcomi 11299 | . . 3 ⊢ (𝑁 + (𝐾 · 𝑀)) = ((𝐾 · 𝑀) + 𝑁) |
| 11 | 10 | oveq2i 7352 | . 2 ⊢ (𝑀 gcd (𝑁 + (𝐾 · 𝑀))) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) |
| 12 | 4, 11 | eqtri 2754 | 1 ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 + caddc 11004 · cmul 11006 ℕcn 12120 ℤcz 12463 gcd cgcd 16400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 |
| This theorem is referenced by: 12gcd5e1 42036 420gcd8e4 42039 |
| Copyright terms: Public domain | W3C validator |