Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modxai | Structured version Visualization version GIF version |
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
modxai.1 | ⊢ 𝑁 ∈ ℕ |
modxai.2 | ⊢ 𝐴 ∈ ℕ |
modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
modxai.4 | ⊢ 𝐷 ∈ ℤ |
modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
Ref | Expression |
---|---|
modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
2 | 1 | oveq2i 7286 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
4 | 3 | nncni 11983 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
7 | expadd 13825 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
8 | 4, 5, 6, 7 | mp3an 1460 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
9 | 2, 8 | eqtr3i 2768 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
10 | 9 | oveq1i 7285 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
11 | nnexpcl 13795 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
12 | 3, 5, 11 | mp2an 689 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
13 | 12 | nnzi 12344 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
16 | 15 | nn0zi 12345 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
18 | nnexpcl 13795 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
19 | 3, 6, 18 | mp2an 689 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
20 | 19 | nnzi 12344 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
23 | 22 | nn0zi 12345 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
25 | modxai.1 | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
26 | nnrp 12741 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑁 ∈ ℝ+ |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
29 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
31 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
32 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
33 | 14, 17, 21, 24, 28, 30, 32 | modmul12d 13645 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
34 | 33 | mptru 1546 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
35 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
36 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
37 | zcn 12324 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
39 | 25 | nncni 11983 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
40 | 38, 39 | mulcli 10982 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
41 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
42 | 41 | nn0cni 12245 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
43 | 40, 42 | addcomi 11166 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
44 | 35, 43 | eqtr3i 2768 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
45 | 44 | oveq1i 7285 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
46 | 34, 45 | eqtri 2766 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
47 | 41 | nn0rei 12244 | . . . 4 ⊢ 𝑀 ∈ ℝ |
48 | modcyc 13626 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
49 | 47, 27, 36, 48 | mp3an 1460 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
50 | 46, 49 | eqtri 2766 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
51 | 10, 50 | eqtri 2766 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 ℝcr 10870 + caddc 10874 · cmul 10876 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ℝ+crp 12730 mod cmo 13589 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 |
This theorem is referenced by: mod2xi 16770 modxp1i 16771 1259lem3 16834 1259lem4 16835 2503lem2 16839 4001lem3 16844 |
Copyright terms: Public domain | W3C validator |