MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modxai Structured version   Visualization version   GIF version

Theorem modxai 16621
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modxai.1 𝑁 ∈ ℕ
modxai.2 𝐴 ∈ ℕ
modxai.3 𝐵 ∈ ℕ0
modxai.4 𝐷 ∈ ℤ
modxai.5 𝐾 ∈ ℕ0
modxai.6 𝑀 ∈ ℕ0
modxai.7 𝐶 ∈ ℕ0
modxai.8 𝐿 ∈ ℕ0
modxai.11 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
modxai.12 ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁)
modxai.9 (𝐵 + 𝐶) = 𝐸
modxai.10 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿)
Assertion
Ref Expression
modxai ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem modxai
StepHypRef Expression
1 modxai.9 . . . . 5 (𝐵 + 𝐶) = 𝐸
21oveq2i 7224 . . . 4 (𝐴↑(𝐵 + 𝐶)) = (𝐴𝐸)
3 modxai.2 . . . . . 6 𝐴 ∈ ℕ
43nncni 11840 . . . . 5 𝐴 ∈ ℂ
5 modxai.3 . . . . 5 𝐵 ∈ ℕ0
6 modxai.7 . . . . 5 𝐶 ∈ ℕ0
7 expadd 13677 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴𝐵) · (𝐴𝐶)))
84, 5, 6, 7mp3an 1463 . . . 4 (𝐴↑(𝐵 + 𝐶)) = ((𝐴𝐵) · (𝐴𝐶))
92, 8eqtr3i 2767 . . 3 (𝐴𝐸) = ((𝐴𝐵) · (𝐴𝐶))
109oveq1i 7223 . 2 ((𝐴𝐸) mod 𝑁) = (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁)
11 nnexpcl 13648 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℕ)
123, 5, 11mp2an 692 . . . . . . . 8 (𝐴𝐵) ∈ ℕ
1312nnzi 12201 . . . . . . 7 (𝐴𝐵) ∈ ℤ
1413a1i 11 . . . . . 6 (⊤ → (𝐴𝐵) ∈ ℤ)
15 modxai.5 . . . . . . . 8 𝐾 ∈ ℕ0
1615nn0zi 12202 . . . . . . 7 𝐾 ∈ ℤ
1716a1i 11 . . . . . 6 (⊤ → 𝐾 ∈ ℤ)
18 nnexpcl 13648 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐶) ∈ ℕ)
193, 6, 18mp2an 692 . . . . . . . 8 (𝐴𝐶) ∈ ℕ
2019nnzi 12201 . . . . . . 7 (𝐴𝐶) ∈ ℤ
2120a1i 11 . . . . . 6 (⊤ → (𝐴𝐶) ∈ ℤ)
22 modxai.8 . . . . . . . 8 𝐿 ∈ ℕ0
2322nn0zi 12202 . . . . . . 7 𝐿 ∈ ℤ
2423a1i 11 . . . . . 6 (⊤ → 𝐿 ∈ ℤ)
25 modxai.1 . . . . . . . 8 𝑁 ∈ ℕ
26 nnrp 12597 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
2725, 26ax-mp 5 . . . . . . 7 𝑁 ∈ ℝ+
2827a1i 11 . . . . . 6 (⊤ → 𝑁 ∈ ℝ+)
29 modxai.11 . . . . . . 7 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
3029a1i 11 . . . . . 6 (⊤ → ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁))
31 modxai.12 . . . . . . 7 ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁)
3231a1i 11 . . . . . 6 (⊤ → ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁))
3314, 17, 21, 24, 28, 30, 32modmul12d 13498 . . . . 5 (⊤ → (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁))
3433mptru 1550 . . . 4 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)
35 modxai.10 . . . . . 6 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿)
36 modxai.4 . . . . . . . . 9 𝐷 ∈ ℤ
37 zcn 12181 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
3836, 37ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3925nncni 11840 . . . . . . . 8 𝑁 ∈ ℂ
4038, 39mulcli 10840 . . . . . . 7 (𝐷 · 𝑁) ∈ ℂ
41 modxai.6 . . . . . . . 8 𝑀 ∈ ℕ0
4241nn0cni 12102 . . . . . . 7 𝑀 ∈ ℂ
4340, 42addcomi 11023 . . . . . 6 ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁))
4435, 43eqtr3i 2767 . . . . 5 (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁))
4544oveq1i 7223 . . . 4 ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁)
4634, 45eqtri 2765 . . 3 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁)
4741nn0rei 12101 . . . 4 𝑀 ∈ ℝ
48 modcyc 13479 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁))
4947, 27, 36, 48mp3an 1463 . . 3 ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)
5046, 49eqtri 2765 . 2 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = (𝑀 mod 𝑁)
5110, 50eqtri 2765 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wtru 1544  wcel 2110  (class class class)co 7213  cc 10727  cr 10728   + caddc 10732   · cmul 10734  cn 11830  0cn0 12090  cz 12176  +crp 12586   mod cmo 13442  cexp 13635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636
This theorem is referenced by:  mod2xi  16622  modxp1i  16623  1259lem3  16686  1259lem4  16687  2503lem2  16691  4001lem3  16696
  Copyright terms: Public domain W3C validator