![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modxai | Structured version Visualization version GIF version |
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
modxai.1 | ⊢ 𝑁 ∈ ℕ |
modxai.2 | ⊢ 𝐴 ∈ ℕ |
modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
modxai.4 | ⊢ 𝐷 ∈ ℤ |
modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
Ref | Expression |
---|---|
modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
2 | 1 | oveq2i 7459 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
4 | 3 | nncni 12303 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
7 | expadd 14155 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
8 | 4, 5, 6, 7 | mp3an 1461 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
9 | 2, 8 | eqtr3i 2770 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
10 | 9 | oveq1i 7458 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
11 | nnexpcl 14125 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
12 | 3, 5, 11 | mp2an 691 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
13 | 12 | nnzi 12667 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
16 | 15 | nn0zi 12668 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
18 | nnexpcl 14125 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
19 | 3, 6, 18 | mp2an 691 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
20 | 19 | nnzi 12667 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
23 | 22 | nn0zi 12668 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
25 | modxai.1 | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
26 | nnrp 13068 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑁 ∈ ℝ+ |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
29 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
31 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
32 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
33 | 14, 17, 21, 24, 28, 30, 32 | modmul12d 13976 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
34 | 33 | mptru 1544 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
35 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
36 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
37 | zcn 12644 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
39 | 25 | nncni 12303 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
40 | 38, 39 | mulcli 11297 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
41 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
42 | 41 | nn0cni 12565 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
43 | 40, 42 | addcomi 11481 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
44 | 35, 43 | eqtr3i 2770 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
45 | 44 | oveq1i 7458 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
46 | 34, 45 | eqtri 2768 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
47 | 41 | nn0rei 12564 | . . . 4 ⊢ 𝑀 ∈ ℝ |
48 | modcyc 13957 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
49 | 47, 27, 36, 48 | mp3an 1461 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
50 | 46, 49 | eqtri 2768 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
51 | 10, 50 | eqtri 2768 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 ℝcr 11183 + caddc 11187 · cmul 11189 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ℝ+crp 13057 mod cmo 13920 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 |
This theorem is referenced by: mod2xi 17116 modxp1i 17117 1259lem3 17180 1259lem4 17181 2503lem2 17185 4001lem3 17190 |
Copyright terms: Public domain | W3C validator |