| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modxai | Structured version Visualization version GIF version | ||
| Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| modxai.1 | ⊢ 𝑁 ∈ ℕ |
| modxai.2 | ⊢ 𝐴 ∈ ℕ |
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
| modxai.4 | ⊢ 𝐷 ∈ ℤ |
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
| modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
| modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
| modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
| modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
| modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
| modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
| Ref | Expression |
|---|---|
| modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
| 2 | 1 | oveq2i 7398 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
| 3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
| 4 | 3 | nncni 12196 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 7 | expadd 14069 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 9 | 2, 8 | eqtr3i 2754 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 10 | 9 | oveq1i 7397 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
| 11 | nnexpcl 14039 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
| 12 | 3, 5, 11 | mp2an 692 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
| 13 | 12 | nnzi 12557 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
| 15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
| 16 | 15 | nn0zi 12558 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
| 18 | nnexpcl 14039 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
| 19 | 3, 6, 18 | mp2an 692 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
| 20 | 19 | nnzi 12557 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
| 22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
| 23 | 22 | nn0zi 12558 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
| 25 | modxai.1 | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
| 26 | nnrp 12963 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑁 ∈ ℝ+ |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
| 29 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
| 31 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
| 32 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
| 33 | 14, 17, 21, 24, 28, 30, 32 | modmul12d 13890 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
| 34 | 33 | mptru 1547 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
| 35 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
| 36 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
| 37 | zcn 12534 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
| 38 | 36, 37 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
| 39 | 25 | nncni 12196 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
| 40 | 38, 39 | mulcli 11181 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
| 41 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 42 | 41 | nn0cni 12454 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
| 43 | 40, 42 | addcomi 11365 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
| 44 | 35, 43 | eqtr3i 2754 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
| 45 | 44 | oveq1i 7397 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 46 | 34, 45 | eqtri 2752 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 47 | 41 | nn0rei 12453 | . . . 4 ⊢ 𝑀 ∈ ℝ |
| 48 | modcyc 13868 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
| 49 | 47, 27, 36, 48 | mp3an 1463 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
| 50 | 46, 49 | eqtri 2752 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
| 51 | 10, 50 | eqtri 2752 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 ℝcr 11067 + caddc 11071 · cmul 11073 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ℝ+crp 12951 mod cmo 13831 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: mod2xi 17040 modxp1i 17041 1259lem3 17103 1259lem4 17104 2503lem2 17108 4001lem3 17113 |
| Copyright terms: Public domain | W3C validator |