Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modxai | Structured version Visualization version GIF version |
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
modxai.1 | ⊢ 𝑁 ∈ ℕ |
modxai.2 | ⊢ 𝐴 ∈ ℕ |
modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
modxai.4 | ⊢ 𝐷 ∈ ℤ |
modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
Ref | Expression |
---|---|
modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
2 | 1 | oveq2i 7266 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
4 | 3 | nncni 11913 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
7 | expadd 13753 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
8 | 4, 5, 6, 7 | mp3an 1459 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
9 | 2, 8 | eqtr3i 2768 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
10 | 9 | oveq1i 7265 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
11 | nnexpcl 13723 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
12 | 3, 5, 11 | mp2an 688 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
13 | 12 | nnzi 12274 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
16 | 15 | nn0zi 12275 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
18 | nnexpcl 13723 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
19 | 3, 6, 18 | mp2an 688 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
20 | 19 | nnzi 12274 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
23 | 22 | nn0zi 12275 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
25 | modxai.1 | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
26 | nnrp 12670 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑁 ∈ ℝ+ |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
29 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
31 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
32 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
33 | 14, 17, 21, 24, 28, 30, 32 | modmul12d 13573 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
34 | 33 | mptru 1546 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
35 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
36 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
37 | zcn 12254 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
39 | 25 | nncni 11913 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
40 | 38, 39 | mulcli 10913 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
41 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
42 | 41 | nn0cni 12175 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
43 | 40, 42 | addcomi 11096 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
44 | 35, 43 | eqtr3i 2768 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
45 | 44 | oveq1i 7265 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
46 | 34, 45 | eqtri 2766 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
47 | 41 | nn0rei 12174 | . . . 4 ⊢ 𝑀 ∈ ℝ |
48 | modcyc 13554 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
49 | 47, 27, 36, 48 | mp3an 1459 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
50 | 46, 49 | eqtri 2766 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
51 | 10, 50 | eqtri 2766 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 ℝcr 10801 + caddc 10805 · cmul 10807 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ℝ+crp 12659 mod cmo 13517 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 |
This theorem is referenced by: mod2xi 16698 modxp1i 16699 1259lem3 16762 1259lem4 16763 2503lem2 16767 4001lem3 16772 |
Copyright terms: Public domain | W3C validator |