MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modxai Structured version   Visualization version   GIF version

Theorem modxai 17107
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modxai.1 𝑁 ∈ ℕ
modxai.2 𝐴 ∈ ℕ
modxai.3 𝐵 ∈ ℕ0
modxai.4 𝐷 ∈ ℤ
modxai.5 𝐾 ∈ ℕ0
modxai.6 𝑀 ∈ ℕ0
modxai.7 𝐶 ∈ ℕ0
modxai.8 𝐿 ∈ ℕ0
modxai.11 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
modxai.12 ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁)
modxai.9 (𝐵 + 𝐶) = 𝐸
modxai.10 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿)
Assertion
Ref Expression
modxai ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem modxai
StepHypRef Expression
1 modxai.9 . . . . 5 (𝐵 + 𝐶) = 𝐸
21oveq2i 7443 . . . 4 (𝐴↑(𝐵 + 𝐶)) = (𝐴𝐸)
3 modxai.2 . . . . . 6 𝐴 ∈ ℕ
43nncni 12277 . . . . 5 𝐴 ∈ ℂ
5 modxai.3 . . . . 5 𝐵 ∈ ℕ0
6 modxai.7 . . . . 5 𝐶 ∈ ℕ0
7 expadd 14146 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴𝐵) · (𝐴𝐶)))
84, 5, 6, 7mp3an 1462 . . . 4 (𝐴↑(𝐵 + 𝐶)) = ((𝐴𝐵) · (𝐴𝐶))
92, 8eqtr3i 2766 . . 3 (𝐴𝐸) = ((𝐴𝐵) · (𝐴𝐶))
109oveq1i 7442 . 2 ((𝐴𝐸) mod 𝑁) = (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁)
11 nnexpcl 14116 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℕ)
123, 5, 11mp2an 692 . . . . . . . 8 (𝐴𝐵) ∈ ℕ
1312nnzi 12643 . . . . . . 7 (𝐴𝐵) ∈ ℤ
1413a1i 11 . . . . . 6 (⊤ → (𝐴𝐵) ∈ ℤ)
15 modxai.5 . . . . . . . 8 𝐾 ∈ ℕ0
1615nn0zi 12644 . . . . . . 7 𝐾 ∈ ℤ
1716a1i 11 . . . . . 6 (⊤ → 𝐾 ∈ ℤ)
18 nnexpcl 14116 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐶) ∈ ℕ)
193, 6, 18mp2an 692 . . . . . . . 8 (𝐴𝐶) ∈ ℕ
2019nnzi 12643 . . . . . . 7 (𝐴𝐶) ∈ ℤ
2120a1i 11 . . . . . 6 (⊤ → (𝐴𝐶) ∈ ℤ)
22 modxai.8 . . . . . . . 8 𝐿 ∈ ℕ0
2322nn0zi 12644 . . . . . . 7 𝐿 ∈ ℤ
2423a1i 11 . . . . . 6 (⊤ → 𝐿 ∈ ℤ)
25 modxai.1 . . . . . . . 8 𝑁 ∈ ℕ
26 nnrp 13047 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
2725, 26ax-mp 5 . . . . . . 7 𝑁 ∈ ℝ+
2827a1i 11 . . . . . 6 (⊤ → 𝑁 ∈ ℝ+)
29 modxai.11 . . . . . . 7 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
3029a1i 11 . . . . . 6 (⊤ → ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁))
31 modxai.12 . . . . . . 7 ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁)
3231a1i 11 . . . . . 6 (⊤ → ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁))
3314, 17, 21, 24, 28, 30, 32modmul12d 13967 . . . . 5 (⊤ → (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁))
3433mptru 1546 . . . 4 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)
35 modxai.10 . . . . . 6 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿)
36 modxai.4 . . . . . . . . 9 𝐷 ∈ ℤ
37 zcn 12620 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
3836, 37ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3925nncni 12277 . . . . . . . 8 𝑁 ∈ ℂ
4038, 39mulcli 11269 . . . . . . 7 (𝐷 · 𝑁) ∈ ℂ
41 modxai.6 . . . . . . . 8 𝑀 ∈ ℕ0
4241nn0cni 12540 . . . . . . 7 𝑀 ∈ ℂ
4340, 42addcomi 11453 . . . . . 6 ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁))
4435, 43eqtr3i 2766 . . . . 5 (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁))
4544oveq1i 7442 . . . 4 ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁)
4634, 45eqtri 2764 . . 3 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁)
4741nn0rei 12539 . . . 4 𝑀 ∈ ℝ
48 modcyc 13947 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁))
4947, 27, 36, 48mp3an 1462 . . 3 ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)
5046, 49eqtri 2764 . 2 (((𝐴𝐵) · (𝐴𝐶)) mod 𝑁) = (𝑀 mod 𝑁)
5110, 50eqtri 2764 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2107  (class class class)co 7432  cc 11154  cr 11155   + caddc 11159   · cmul 11161  cn 12267  0cn0 12528  cz 12615  +crp 13035   mod cmo 13910  cexp 14103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104
This theorem is referenced by:  mod2xi  17108  modxp1i  17109  1259lem3  17171  1259lem4  17172  2503lem2  17176  4001lem3  17181
  Copyright terms: Public domain W3C validator