MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zltlem1 Structured version   Visualization version   GIF version

Theorem zltlem1 12614
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zltlem1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))

Proof of Theorem zltlem1
StepHypRef Expression
1 peano2zm 12604 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 zleltp1 12612 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
31, 2sylan2 593 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
4 zcn 12562 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 ax-1cn 11167 . . . . 5 1 ∈ ℂ
6 npcan 11468 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 586 . . . 4 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
87adantl 482 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁)
98breq2d 5160 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁))
103, 9bitr2d 279 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5148  (class class class)co 7408  cc 11107  1c1 11110   + caddc 11112   < clt 11247  cle 11248  cmin 11443  cz 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558
This theorem is referenced by:  nn0ltlem1  12621  nn0lt2  12624  nn0le2is012  12625  nnltlem1  12628  nnm1ge0  12629  zextlt  12635  uzm1  12859  elfzm11  13571  preduz  13622  predfz  13625  elfzo  13633  fzosplitprm1  13741  intfracq  13823  seqf1olem1  14006  seqcoll  14424  isercolllem1  15610  fzm1ndvds  16264  bitscmp  16378  nn0seqcvgd  16506  isprm3  16619  ncoprmlnprm  16663  prmdiveq  16718  4sqlem12  16888  degltlem1  25589  dgreq0  25778  wilthlem1  26569  lgseisenlem2  26876  lgsquadlem1  26880  2lgslem1a1  26889  2sqlem8  26926  crctcshwlkn0lem4  29064  clwlkclwwlklem2a4  29247  clwlkclwwlklem2a  29248  frgrreggt1  29643  bcm1n  32001  ply1degltel  32661  smatrcl  32771  ballotlemimin  33499  ballotlemfrcn0  33523  knoppndvlem2  35384  poimirlem2  36485  poimirlem24  36507  zltlem1d  40839  sticksstones10  40966  metakunt7  40986  metakunt21  41000  metakunt22  41001  metakunt24  41003  fmul01lt1lem2  44291  fourierdlem41  44854  fourierdlem42  44855  fourierdlem50  44862  fourierdlem64  44876  fourierdlem79  44891  etransclem44  44984  etransclem48  44988  pw2m1lepw2m1  47191  fllog2  47244
  Copyright terms: Public domain W3C validator