| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zltlem1 | Structured version Visualization version GIF version | ||
| Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| Ref | Expression |
|---|---|
| zltlem1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm 12643 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 2 | zleltp1 12651 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) |
| 4 | zcn 12601 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 5 | ax-1cn 11195 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | npcan 11499 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁) |
| 9 | 8 | breq2d 5135 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁)) |
| 10 | 3, 9 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℂcc 11135 1c1 11138 + caddc 11140 < clt 11277 ≤ cle 11278 − cmin 11474 ℤcz 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 |
| This theorem is referenced by: zltlem1d 12654 nn0ltlem1 12661 nn0lt2 12664 nn0le2is012 12665 nnltlem1 12668 nnm1ge0 12669 zextlt 12675 uzm1 12898 elfzm11 13617 preduz 13672 predfz 13675 elfzo 13683 fzosplitprm1 13798 intfracq 13881 seqf1olem1 14064 seqcoll 14485 isercolllem1 15683 fzm1ndvds 16341 bitscmp 16457 nn0seqcvgd 16589 isprm3 16702 ncoprmlnprm 16747 prmdiveq 16805 4sqlem12 16976 degltlem1 26047 dgreq0 26241 wilthlem1 27047 lgseisenlem2 27356 lgsquadlem1 27360 2lgslem1a1 27369 2sqlem8 27406 crctcshwlkn0lem4 29761 clwlkclwwlklem2a4 29944 clwlkclwwlklem2a 29945 frgrreggt1 30340 bcm1n 32736 ply1degltel 33550 smatrcl 33754 ballotlemimin 34467 ballotlemfrcn0 34491 knoppndvlem2 36473 poimirlem2 37588 poimirlem24 37610 sticksstones10 42115 metakunt7 42171 metakunt21 42185 metakunt22 42186 metakunt24 42188 fmul01lt1lem2 45557 fourierdlem41 46120 fourierdlem42 46121 fourierdlem50 46128 fourierdlem64 46142 fourierdlem79 46157 etransclem44 46250 etransclem48 46254 pw2m1lepw2m1 48395 fllog2 48447 |
| Copyright terms: Public domain | W3C validator |