| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zltlem1 | Structured version Visualization version GIF version | ||
| Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| Ref | Expression |
|---|---|
| zltlem1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm 12518 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 2 | zleltp1 12526 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) |
| 4 | zcn 12476 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 5 | ax-1cn 11067 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | npcan 11372 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁) |
| 9 | 8 | breq2d 5104 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁)) |
| 10 | 3, 9 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 − cmin 11347 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 |
| This theorem is referenced by: zltlem1d 12529 nn0ltlem1 12536 nn0lt2 12539 nn0le2is012 12540 nnltlem1 12543 nnm1ge0 12544 zextlt 12550 uzm1 12773 elfzm11 13498 preduz 13553 predfz 13556 elfzo 13564 fzosplitprm1 13680 intfracq 13763 seqf1olem1 13948 seqcoll 14371 isercolllem1 15572 fzm1ndvds 16233 bitscmp 16349 nn0seqcvgd 16481 isprm3 16594 ncoprmlnprm 16639 prmdiveq 16697 4sqlem12 16868 degltlem1 25975 dgreq0 26169 wilthlem1 26976 lgseisenlem2 27285 lgsquadlem1 27289 2lgslem1a1 27298 2sqlem8 27335 crctcshwlkn0lem4 29758 clwlkclwwlklem2a4 29941 clwlkclwwlklem2a 29942 frgrreggt1 30337 bcm1n 32739 ply1degltel 33528 smatrcl 33769 ballotlemimin 34480 ballotlemfrcn0 34504 knoppndvlem2 36497 poimirlem2 37612 poimirlem24 37634 sticksstones10 42138 fmul01lt1lem2 45576 fourierdlem41 46139 fourierdlem42 46140 fourierdlem50 46147 fourierdlem64 46161 fourierdlem79 46176 etransclem44 46269 etransclem48 46273 pw2m1lepw2m1 48515 fllog2 48563 |
| Copyright terms: Public domain | W3C validator |