![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zltlem1 | Structured version Visualization version GIF version |
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
Ref | Expression |
---|---|
zltlem1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 12547 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | zleltp1 12555 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) | |
3 | 1, 2 | sylan2 594 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) |
4 | zcn 12505 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | ax-1cn 11110 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | npcan 11411 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
7 | 4, 5, 6 | sylancl 587 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
8 | 7 | adantl 483 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁) |
9 | 8 | breq2d 5118 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁)) |
10 | 3, 9 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 ℂcc 11050 1c1 11053 + caddc 11055 < clt 11190 ≤ cle 11191 − cmin 11386 ℤcz 12500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-n0 12415 df-z 12501 |
This theorem is referenced by: nn0ltlem1 12564 nn0lt2 12567 nn0le2is012 12568 nnltlem1 12571 nnm1ge0 12572 zextlt 12578 uzm1 12802 elfzm11 13513 preduz 13564 predfz 13567 elfzo 13575 fzosplitprm1 13683 intfracq 13765 seqf1olem1 13948 seqcoll 14364 isercolllem1 15550 fzm1ndvds 16205 bitscmp 16319 nn0seqcvgd 16447 isprm3 16560 ncoprmlnprm 16604 prmdiveq 16659 4sqlem12 16829 degltlem1 25440 dgreq0 25629 wilthlem1 26420 lgseisenlem2 26727 lgsquadlem1 26731 2lgslem1a1 26740 2sqlem8 26777 crctcshwlkn0lem4 28761 clwlkclwwlklem2a4 28944 clwlkclwwlklem2a 28945 frgrreggt1 29340 bcm1n 31701 smatrcl 32380 ballotlemimin 33108 ballotlemfrcn0 33132 knoppndvlem2 34979 poimirlem2 36083 poimirlem24 36105 zltlem1d 40439 sticksstones10 40566 metakunt7 40586 metakunt21 40600 metakunt22 40601 metakunt24 40603 fmul01lt1lem2 43833 fourierdlem41 44396 fourierdlem42 44397 fourierdlem50 44404 fourierdlem64 44418 fourierdlem79 44433 etransclem44 44526 etransclem48 44530 pw2m1lepw2m1 46608 fllog2 46661 |
Copyright terms: Public domain | W3C validator |