| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zltlem1 | Structured version Visualization version GIF version | ||
| Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| Ref | Expression |
|---|---|
| zltlem1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm 12552 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 2 | zleltp1 12560 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) |
| 4 | zcn 12510 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 5 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | npcan 11406 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁) |
| 9 | 8 | breq2d 5114 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁)) |
| 10 | 3, 9 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 − cmin 11381 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 |
| This theorem is referenced by: zltlem1d 12563 nn0ltlem1 12570 nn0lt2 12573 nn0le2is012 12574 nnltlem1 12577 nnm1ge0 12578 zextlt 12584 uzm1 12807 elfzm11 13532 preduz 13587 predfz 13590 elfzo 13598 fzosplitprm1 13714 intfracq 13797 seqf1olem1 13982 seqcoll 14405 isercolllem1 15607 fzm1ndvds 16268 bitscmp 16384 nn0seqcvgd 16516 isprm3 16629 ncoprmlnprm 16674 prmdiveq 16732 4sqlem12 16903 degltlem1 26010 dgreq0 26204 wilthlem1 27011 lgseisenlem2 27320 lgsquadlem1 27324 2lgslem1a1 27333 2sqlem8 27370 crctcshwlkn0lem4 29793 clwlkclwwlklem2a4 29976 clwlkclwwlklem2a 29977 frgrreggt1 30372 bcm1n 32768 ply1degltel 33553 smatrcl 33779 ballotlemimin 34490 ballotlemfrcn0 34514 knoppndvlem2 36494 poimirlem2 37609 poimirlem24 37631 sticksstones10 42136 fmul01lt1lem2 45576 fourierdlem41 46139 fourierdlem42 46140 fourierdlem50 46147 fourierdlem64 46161 fourierdlem79 46176 etransclem44 46269 etransclem48 46273 pw2m1lepw2m1 48502 fllog2 48550 |
| Copyright terms: Public domain | W3C validator |