MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zltlem1 Structured version   Visualization version   GIF version

Theorem zltlem1 12593
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zltlem1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))

Proof of Theorem zltlem1
StepHypRef Expression
1 peano2zm 12583 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 zleltp1 12591 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
31, 2sylan2 593 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
4 zcn 12541 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 ax-1cn 11133 . . . . 5 1 ∈ ℂ
6 npcan 11437 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 586 . . . 4 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
87adantl 481 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁)
98breq2d 5122 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁))
103, 9bitr2d 280 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537
This theorem is referenced by:  zltlem1d  12594  nn0ltlem1  12601  nn0lt2  12604  nn0le2is012  12605  nnltlem1  12608  nnm1ge0  12609  zextlt  12615  uzm1  12838  elfzm11  13563  preduz  13618  predfz  13621  elfzo  13629  fzosplitprm1  13745  intfracq  13828  seqf1olem1  14013  seqcoll  14436  isercolllem1  15638  fzm1ndvds  16299  bitscmp  16415  nn0seqcvgd  16547  isprm3  16660  ncoprmlnprm  16705  prmdiveq  16763  4sqlem12  16934  degltlem1  25984  dgreq0  26178  wilthlem1  26985  lgseisenlem2  27294  lgsquadlem1  27298  2lgslem1a1  27307  2sqlem8  27344  crctcshwlkn0lem4  29750  clwlkclwwlklem2a4  29933  clwlkclwwlklem2a  29934  frgrreggt1  30329  bcm1n  32725  ply1degltel  33567  smatrcl  33793  ballotlemimin  34504  ballotlemfrcn0  34528  knoppndvlem2  36508  poimirlem2  37623  poimirlem24  37645  sticksstones10  42150  fmul01lt1lem2  45590  fourierdlem41  46153  fourierdlem42  46154  fourierdlem50  46161  fourierdlem64  46175  fourierdlem79  46190  etransclem44  46283  etransclem48  46287  pw2m1lepw2m1  48513  fllog2  48561
  Copyright terms: Public domain W3C validator