MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zltlem1 Structured version   Visualization version   GIF version

Theorem zltlem1 12557
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zltlem1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))

Proof of Theorem zltlem1
StepHypRef Expression
1 peano2zm 12547 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 zleltp1 12555 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
31, 2sylan2 594 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1)))
4 zcn 12505 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 ax-1cn 11110 . . . . 5 1 ∈ ℂ
6 npcan 11411 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 587 . . . 4 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
87adantl 483 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁)
98breq2d 5118 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁))
103, 9bitr2d 280 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5106  (class class class)co 7358  cc 11050  1c1 11053   + caddc 11055   < clt 11190  cle 11191  cmin 11386  cz 12500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501
This theorem is referenced by:  nn0ltlem1  12564  nn0lt2  12567  nn0le2is012  12568  nnltlem1  12571  nnm1ge0  12572  zextlt  12578  uzm1  12802  elfzm11  13513  preduz  13564  predfz  13567  elfzo  13575  fzosplitprm1  13683  intfracq  13765  seqf1olem1  13948  seqcoll  14364  isercolllem1  15550  fzm1ndvds  16205  bitscmp  16319  nn0seqcvgd  16447  isprm3  16560  ncoprmlnprm  16604  prmdiveq  16659  4sqlem12  16829  degltlem1  25440  dgreq0  25629  wilthlem1  26420  lgseisenlem2  26727  lgsquadlem1  26731  2lgslem1a1  26740  2sqlem8  26777  crctcshwlkn0lem4  28761  clwlkclwwlklem2a4  28944  clwlkclwwlklem2a  28945  frgrreggt1  29340  bcm1n  31701  smatrcl  32380  ballotlemimin  33108  ballotlemfrcn0  33132  knoppndvlem2  34979  poimirlem2  36083  poimirlem24  36105  zltlem1d  40439  sticksstones10  40566  metakunt7  40586  metakunt21  40600  metakunt22  40601  metakunt24  40603  fmul01lt1lem2  43833  fourierdlem41  44396  fourierdlem42  44397  fourierdlem50  44404  fourierdlem64  44418  fourierdlem79  44433  etransclem44  44526  etransclem48  44530  pw2m1lepw2m1  46608  fllog2  46661
  Copyright terms: Public domain W3C validator