Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zltlem1 | Structured version Visualization version GIF version |
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
Ref | Expression |
---|---|
zltlem1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 12469 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | zleltp1 12477 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) | |
3 | 1, 2 | sylan2 594 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ 𝑀 < ((𝑁 − 1) + 1))) |
4 | zcn 12430 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | ax-1cn 11035 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | npcan 11336 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
7 | 4, 5, 6 | sylancl 587 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
8 | 7 | adantl 483 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) + 1) = 𝑁) |
9 | 8 | breq2d 5109 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < ((𝑁 − 1) + 1) ↔ 𝑀 < 𝑁)) |
10 | 3, 9 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 class class class wbr 5097 (class class class)co 7342 ℂcc 10975 1c1 10978 + caddc 10980 < clt 11115 ≤ cle 11116 − cmin 11311 ℤcz 12425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-z 12426 |
This theorem is referenced by: nn0ltlem1 12486 nn0lt2 12489 nn0le2is012 12490 nnltlem1 12493 nnm1ge0 12494 zextlt 12500 uzm1 12722 elfzm11 13433 preduz 13484 predfz 13487 elfzo 13495 fzosplitprm1 13603 intfracq 13685 seqf1olem1 13868 seqcoll 14283 isercolllem1 15476 fzm1ndvds 16131 bitscmp 16245 nn0seqcvgd 16373 isprm3 16486 ncoprmlnprm 16530 prmdiveq 16585 4sqlem12 16755 degltlem1 25343 dgreq0 25532 wilthlem1 26323 lgseisenlem2 26630 lgsquadlem1 26634 2lgslem1a1 26643 2sqlem8 26680 crctcshwlkn0lem4 28466 clwlkclwwlklem2a4 28649 clwlkclwwlklem2a 28650 frgrreggt1 29045 bcm1n 31401 smatrcl 32042 ballotlemimin 32770 ballotlemfrcn0 32794 knoppndvlem2 34830 poimirlem2 35933 poimirlem24 35955 zltlem1d 40290 sticksstones10 40417 metakunt7 40437 metakunt21 40451 metakunt22 40452 metakunt24 40454 fmul01lt1lem2 43512 fourierdlem41 44075 fourierdlem42 44076 fourierdlem50 44083 fourierdlem64 44097 fourierdlem79 44112 etransclem44 44205 etransclem48 44209 pw2m1lepw2m1 46277 fllog2 46330 |
Copyright terms: Public domain | W3C validator |