Proof of Theorem aks6d1c5lem1
Step | Hyp | Ref
| Expression |
1 | | zringplusg 21387 |
. . . . . . . . . . 11
⊢ + =
(+g‘ℤring) |
2 | 1 | eqcomi 2737 |
. . . . . . . . . 10
⊢
(+g‘ℤring) = + |
3 | 2 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 →
(+g‘ℤring) = + ) |
4 | 3 | oveqd 7443 |
. . . . . . . 8
⊢ (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = ((0 − 𝐶) + 𝐵)) |
5 | | 0cnd 11245 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℂ) |
6 | | aks6d1c5p1.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ (0...𝐴)) |
7 | 6 | elfzelzd 13542 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℤ) |
8 | 7 | zcnd 12705 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
9 | | aks6d1c5p1.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ (0...𝐴)) |
10 | 9 | elfzelzd 13542 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℤ) |
11 | 10 | zcnd 12705 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 5, 8, 11 | subadd23d 11631 |
. . . . . . . . 9
⊢ (𝜑 → ((0 − 𝐶) + 𝐵) = (0 + (𝐵 − 𝐶))) |
13 | 11, 8 | subcld 11609 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℂ) |
14 | 13 | addlidd 11453 |
. . . . . . . . 9
⊢ (𝜑 → (0 + (𝐵 − 𝐶)) = (𝐵 − 𝐶)) |
15 | 12, 14 | eqtrd 2768 |
. . . . . . . 8
⊢ (𝜑 → ((0 − 𝐶) + 𝐵) = (𝐵 − 𝐶)) |
16 | 4, 15 | eqtrd 2768 |
. . . . . . 7
⊢ (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = (𝐵 − 𝐶)) |
17 | 16 | fveq2d 6906 |
. . . . . 6
⊢ (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = ((ℤRHom‘𝐾)‘(𝐵 − 𝐶))) |
18 | 17 | eqeq1d 2730 |
. . . . 5
⊢ (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g‘𝐾) ↔ ((ℤRHom‘𝐾)‘(𝐵 − 𝐶)) = (0g‘𝐾))) |
19 | | aks6d1p5.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℙ) |
20 | 19 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝑃 ∈ ℙ) |
21 | | prmnn 16652 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝑃 ∈ ℕ) |
23 | 22 | nnzd 12623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝑃 ∈ ℤ) |
24 | | dvds0 16256 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 0) |
25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝑃 ∥ 0) |
26 | 11 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 ∈ ℂ) |
27 | 26 | subidd 11597 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → (𝐵 − 𝐵) = 0) |
28 | 27 | eqcomd 2734 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 0 = (𝐵 − 𝐵)) |
29 | | simpr 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) |
30 | 29 | oveq2d 7442 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → (𝐵 − 𝐵) = (𝐵 − 𝐶)) |
31 | 28, 30 | eqtrd 2768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 0 = (𝐵 − 𝐶)) |
32 | 25, 31 | breqtrd 5178 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝑃 ∥ (𝐵 − 𝐶)) |
33 | 32 | ex 411 |
. . . . . . 7
⊢ (𝜑 → (𝐵 = 𝐶 → 𝑃 ∥ (𝐵 − 𝐶))) |
34 | 19, 21 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℕ) |
35 | 34 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝑃 ∈ ℕ) |
36 | 35 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℕ) |
37 | | 1zzd 12631 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ∈ ℤ) |
38 | 36 | nnzd 12623 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℤ) |
39 | 38, 37 | zsubcld 12709 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝑃 − 1) ∈ ℤ) |
40 | 10, 7 | zsubcld 12709 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℤ) |
41 | 40 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵 − 𝐶) ∈ ℤ) |
42 | | 1e0p1 12757 |
. . . . . . . . . . . . . 14
⊢ 1 = (0 +
1) |
43 | 42 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 = (0 + 1)) |
44 | | simpr 483 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) |
45 | 7 | zred 12704 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 ∈ ℝ) |
46 | 45 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐶 ∈ ℝ) |
47 | 46 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ) |
48 | 10 | zred 12704 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ ℝ) |
49 | 48 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 ∈ ℝ) |
50 | 49 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ) |
51 | 47, 50 | posdifd 11839 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐶 < 𝐵 ↔ 0 < (𝐵 − 𝐶))) |
52 | 44, 51 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 < (𝐵 − 𝐶)) |
53 | | 0zd 12608 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ∈ ℤ) |
54 | 53, 41 | zltp1led 41482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 < (𝐵 − 𝐶) ↔ (0 + 1) ≤ (𝐵 − 𝐶))) |
55 | 52, 54 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 + 1) ≤ (𝐵 − 𝐶)) |
56 | 43, 55 | eqbrtrd 5174 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ≤ (𝐵 − 𝐶)) |
57 | 41 | zred 12704 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵 − 𝐶) ∈ ℝ) |
58 | 36 | nnred 12265 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℝ) |
59 | | elfzle1 13544 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶) |
60 | 6, 59 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ≤ 𝐶) |
61 | 60 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 0 ≤ 𝐶) |
62 | 61 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ≤ 𝐶) |
63 | 50, 47 | subge02d 11844 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 ≤ 𝐶 ↔ (𝐵 − 𝐶) ≤ 𝐵)) |
64 | 62, 63 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵 − 𝐶) ≤ 𝐵) |
65 | | aks6d1c5.4 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
66 | 65 | nn0red 12571 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ ℝ) |
67 | 34 | nnred 12265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ ℝ) |
68 | | elfzle2 13545 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ (0...𝐴) → 𝐵 ≤ 𝐴) |
69 | 9, 68 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ≤ 𝐴) |
70 | | aks6d1c5.5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 < 𝑃) |
71 | 48, 66, 67, 69, 70 | lelttrd 11410 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 < 𝑃) |
72 | 71 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 < 𝑃) |
73 | 72 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 < 𝑃) |
74 | 57, 50, 58, 64, 73 | lelttrd 11410 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵 − 𝐶) < 𝑃) |
75 | 41, 38 | zltlem1d 41481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ((𝐵 − 𝐶) < 𝑃 ↔ (𝐵 − 𝐶) ≤ (𝑃 − 1))) |
76 | 74, 75 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵 − 𝐶) ≤ (𝑃 − 1)) |
77 | 37, 39, 41, 56, 76 | elfzd 13532 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵 − 𝐶) ∈ (1...(𝑃 − 1))) |
78 | | fzm1ndvds 16306 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝐵 − 𝐶) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐵 − 𝐶)) |
79 | 36, 77, 78 | syl2anc 582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵 − 𝐶)) |
80 | | simpll 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝜑) |
81 | | axlttri 11323 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 < 𝐵))) |
82 | 48, 45, 81 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 < 𝐵))) |
83 | | ioran 981 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐵 = 𝐶 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)) |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (¬ (𝐵 = 𝐶 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵))) |
85 | 82, 84 | bitr2d 279 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) ↔ 𝐵 < 𝐶)) |
86 | 85 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶)) |
87 | 86 | imp 405 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)) → 𝐵 < 𝐶) |
88 | 87 | anassrs 466 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶) |
89 | 80, 88 | jca 510 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → (𝜑 ∧ 𝐵 < 𝐶)) |
90 | 34 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝑃 ∈ ℕ) |
91 | | 1zzd 12631 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 1 ∈ ℤ) |
92 | 34 | nnzd 12623 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ ℤ) |
93 | 92 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝑃 ∈ ℤ) |
94 | 93, 91 | zsubcld 12709 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝑃 − 1) ∈ ℤ) |
95 | 7 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℤ) |
96 | 10 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℤ) |
97 | 95, 96 | zsubcld 12709 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝐶 − 𝐵) ∈ ℤ) |
98 | 42 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 1 = (0 + 1)) |
99 | 48, 45 | posdifd 11839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶 − 𝐵))) |
100 | 99 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 < 𝐶 → 0 < (𝐶 − 𝐵))) |
101 | 100 | imp 405 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 0 < (𝐶 − 𝐵)) |
102 | | 0zd 12608 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 0 ∈ ℤ) |
103 | 102, 97 | zltp1led 41482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (0 < (𝐶 − 𝐵) ↔ (0 + 1) ≤ (𝐶 − 𝐵))) |
104 | 101, 103 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (0 + 1) ≤ (𝐶 − 𝐵)) |
105 | 98, 104 | eqbrtrd 5174 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 1 ≤ (𝐶 − 𝐵)) |
106 | 97 | zred 12704 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝐶 − 𝐵) ∈ ℝ) |
107 | 45 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ) |
108 | 67 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝑃 ∈ ℝ) |
109 | 9 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐵 ∈ (0...𝐴)) |
110 | | elfzle1 13544 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ (0...𝐴) → 0 ≤ 𝐵) |
111 | 109, 110 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 0 ≤ 𝐵) |
112 | 48 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ) |
113 | 107, 112 | subge02d 11844 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (0 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ 𝐶)) |
114 | 111, 113 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝐶 − 𝐵) ≤ 𝐶) |
115 | 66 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ) |
116 | | elfzle2 13545 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ∈ (0...𝐴) → 𝐶 ≤ 𝐴) |
117 | 6, 116 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 ≤ 𝐴) |
118 | 117 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐶 ≤ 𝐴) |
119 | 70 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐴 < 𝑃) |
120 | 107, 115,
108, 118, 119 | lelttrd 11410 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → 𝐶 < 𝑃) |
121 | 106, 107,
108, 114, 120 | lelttrd 11410 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝐶 − 𝐵) < 𝑃) |
122 | 97, 93 | zltlem1d 41481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → ((𝐶 − 𝐵) < 𝑃 ↔ (𝐶 − 𝐵) ≤ (𝑃 − 1))) |
123 | 121, 122 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝐶 − 𝐵) ≤ (𝑃 − 1)) |
124 | 91, 94, 97, 105, 123 | elfzd 13532 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝐶 − 𝐵) ∈ (1...(𝑃 − 1))) |
125 | | fzm1ndvds 16306 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℕ ∧ (𝐶 − 𝐵) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐶 − 𝐵)) |
126 | 90, 124, 125 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐶 − 𝐵)) |
127 | | dvdsnegb 16258 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℤ ∧ (𝐵 − 𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵 − 𝐶) ↔ 𝑃 ∥ -(𝐵 − 𝐶))) |
128 | 92, 40, 127 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 ∥ (𝐵 − 𝐶) ↔ 𝑃 ∥ -(𝐵 − 𝐶))) |
129 | 11, 8 | negsubdi2d 11625 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -(𝐵 − 𝐶) = (𝐶 − 𝐵)) |
130 | 129 | breq2d 5164 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 ∥ -(𝐵 − 𝐶) ↔ 𝑃 ∥ (𝐶 − 𝐵))) |
131 | 128, 130 | bitrd 278 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 ∥ (𝐵 − 𝐶) ↔ 𝑃 ∥ (𝐶 − 𝐵))) |
132 | 131 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → (𝑃 ∥ (𝐵 − 𝐶) ↔ 𝑃 ∥ (𝐶 − 𝐵))) |
133 | 126, 132 | mtbird 324 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐵 − 𝐶)) |
134 | 89, 133 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵 − 𝐶)) |
135 | 79, 134 | pm2.61dan 811 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐵 = 𝐶) → ¬ 𝑃 ∥ (𝐵 − 𝐶)) |
136 | 135 | ex 411 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝐵 = 𝐶 → ¬ 𝑃 ∥ (𝐵 − 𝐶))) |
137 | 136 | con4d 115 |
. . . . . . 7
⊢ (𝜑 → (𝑃 ∥ (𝐵 − 𝐶) → 𝐵 = 𝐶)) |
138 | 33, 137 | impbid 211 |
. . . . . 6
⊢ (𝜑 → (𝐵 = 𝐶 ↔ 𝑃 ∥ (𝐵 − 𝐶))) |
139 | | aks6d1p5.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Field) |
140 | 139 | fldcrngd 20644 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ CRing) |
141 | | crngring 20192 |
. . . . . . . 8
⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) |
142 | 140, 141 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Ring) |
143 | | aks6d1c5.3 |
. . . . . . . 8
⊢ 𝑃 = (chr‘𝐾) |
144 | | eqid 2728 |
. . . . . . . 8
⊢
(ℤRHom‘𝐾) = (ℤRHom‘𝐾) |
145 | | eqid 2728 |
. . . . . . . 8
⊢
(0g‘𝐾) = (0g‘𝐾) |
146 | 143, 144,
145 | chrdvds 21463 |
. . . . . . 7
⊢ ((𝐾 ∈ Ring ∧ (𝐵 − 𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵 − 𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵 − 𝐶)) = (0g‘𝐾))) |
147 | 142, 40, 146 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∥ (𝐵 − 𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵 − 𝐶)) = (0g‘𝐾))) |
148 | 138, 147 | bitr2d 279 |
. . . . 5
⊢ (𝜑 → (((ℤRHom‘𝐾)‘(𝐵 − 𝐶)) = (0g‘𝐾) ↔ 𝐵 = 𝐶)) |
149 | 18, 148 | bitrd 278 |
. . . 4
⊢ (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g‘𝐾) ↔ 𝐵 = 𝐶)) |
150 | 149 | bicomd 222 |
. . 3
⊢ (𝜑 → (𝐵 = 𝐶 ↔ ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g‘𝐾))) |
151 | 144 | zrhrhm 21444 |
. . . . . . 7
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾)
∈ (ℤring RingHom 𝐾)) |
152 | | rhmghm 20430 |
. . . . . . 7
⊢
((ℤRHom‘𝐾) ∈ (ℤring RingHom
𝐾) →
(ℤRHom‘𝐾)
∈ (ℤring GrpHom 𝐾)) |
153 | 151, 152 | syl 17 |
. . . . . 6
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾)
∈ (ℤring GrpHom 𝐾)) |
154 | 142, 153 | syl 17 |
. . . . 5
⊢ (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring
GrpHom 𝐾)) |
155 | | 0zd 12608 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
156 | 155, 7 | zsubcld 12709 |
. . . . . 6
⊢ (𝜑 → (0 − 𝐶) ∈
ℤ) |
157 | | zringbas 21386 |
. . . . . 6
⊢ ℤ =
(Base‘ℤring) |
158 | 156, 157 | eleqtrdi 2839 |
. . . . 5
⊢ (𝜑 → (0 − 𝐶) ∈
(Base‘ℤring)) |
159 | 10, 157 | eleqtrdi 2839 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈
(Base‘ℤring)) |
160 | | eqid 2728 |
. . . . . 6
⊢
(Base‘ℤring) =
(Base‘ℤring) |
161 | | eqid 2728 |
. . . . . 6
⊢
(+g‘ℤring) =
(+g‘ℤring) |
162 | | eqid 2728 |
. . . . . 6
⊢
(+g‘𝐾) = (+g‘𝐾) |
163 | 160, 161,
162 | ghmlin 19182 |
. . . . 5
⊢
(((ℤRHom‘𝐾) ∈ (ℤring GrpHom
𝐾) ∧ (0 − 𝐶) ∈
(Base‘ℤring) ∧ 𝐵 ∈ (Base‘ℤring))
→ ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵))) |
164 | 154, 158,
159, 163 | syl3anc 1368 |
. . . 4
⊢ (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵))) |
165 | 164 | eqeq1d 2730 |
. . 3
⊢ (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g‘𝐾) ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g‘𝐾))) |
166 | 150, 165 | bitrd 278 |
. 2
⊢ (𝜑 → (𝐵 = 𝐶 ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g‘𝐾))) |
167 | | eqid 2728 |
. . . . . 6
⊢
(eval1‘𝐾) = (eval1‘𝐾) |
168 | | eqid 2728 |
. . . . . 6
⊢
(Poly1‘𝐾) = (Poly1‘𝐾) |
169 | | eqid 2728 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
170 | | eqid 2728 |
. . . . . 6
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(Poly1‘𝐾)) |
171 | 157, 169 | ghmf 19181 |
. . . . . . . 8
⊢
((ℤRHom‘𝐾) ∈ (ℤring GrpHom
𝐾) →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
172 | 154, 171 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
173 | 172, 156 | ffvelcdmd 7100 |
. . . . . 6
⊢ (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝐶)) ∈ (Base‘𝐾)) |
174 | | aks6d1c5.6 |
. . . . . . 7
⊢ 𝑋 = (var1‘𝐾) |
175 | 167, 174,
169, 168, 170, 140, 173 | evl1vard 22263 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘(0 − 𝐶)))) |
176 | | eqid 2728 |
. . . . . . 7
⊢
(algSc‘(Poly1‘𝐾)) =
(algSc‘(Poly1‘𝐾)) |
177 | 172, 10 | ffvelcdmd 7100 |
. . . . . . 7
⊢ (𝜑 → ((ℤRHom‘𝐾)‘𝐵) ∈ (Base‘𝐾)) |
178 | 167, 168,
169, 176, 170, 140, 177, 173 | evl1scad 22261 |
. . . . . 6
⊢ (𝜑 →
(((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵)) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵)))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘𝐵))) |
179 | | eqid 2728 |
. . . . . 6
⊢
(+g‘(Poly1‘𝐾)) =
(+g‘(Poly1‘𝐾)) |
180 | 167, 168,
169, 170, 140, 173, 175, 178, 179, 162 | evl1addd 22267 |
. . . . 5
⊢ (𝜑 → ((𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵))) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵)))) |
181 | 180 | simprd 494 |
. . . 4
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵))) |
182 | 181 | eqcomd 2734 |
. . 3
⊢ (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵)) = (((eval1‘𝐾)‘(𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶)))) |
183 | 182 | eqeq1d 2730 |
. 2
⊢ (𝜑 →
((((ℤRHom‘𝐾)‘(0 − 𝐶))(+g‘𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g‘𝐾) ↔ (((eval1‘𝐾)‘(𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g‘𝐾))) |
184 | 166, 183 | bitrd 278 |
1
⊢ (𝜑 → (𝐵 = 𝐶 ↔ (((eval1‘𝐾)‘(𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g‘𝐾))) |