Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem1 42118
Description: Lemma for claim 5, evaluate the linear factor at -c to get a root. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p1.1 (𝜑𝐵 ∈ (0...𝐴))
aks6d1c5p1.2 (𝜑𝐶 ∈ (0...𝐴))
Assertion
Ref Expression
aks6d1c5lem1 (𝜑 → (𝐵 = 𝐶 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))

Proof of Theorem aks6d1c5lem1
StepHypRef Expression
1 zringplusg 21483 . . . . . . . . . . 11 + = (+g‘ℤring)
21eqcomi 2744 . . . . . . . . . 10 (+g‘ℤring) = +
32a1i 11 . . . . . . . . 9 (𝜑 → (+g‘ℤring) = + )
43oveqd 7448 . . . . . . . 8 (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = ((0 − 𝐶) + 𝐵))
5 0cnd 11252 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
6 aks6d1c5p1.2 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (0...𝐴))
76elfzelzd 13562 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
87zcnd 12721 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9 aks6d1c5p1.1 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (0...𝐴))
109elfzelzd 13562 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
1110zcnd 12721 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
125, 8, 11subadd23d 11640 . . . . . . . . 9 (𝜑 → ((0 − 𝐶) + 𝐵) = (0 + (𝐵𝐶)))
1311, 8subcld 11618 . . . . . . . . . 10 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413addlidd 11460 . . . . . . . . 9 (𝜑 → (0 + (𝐵𝐶)) = (𝐵𝐶))
1512, 14eqtrd 2775 . . . . . . . 8 (𝜑 → ((0 − 𝐶) + 𝐵) = (𝐵𝐶))
164, 15eqtrd 2775 . . . . . . 7 (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = (𝐵𝐶))
1716fveq2d 6911 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = ((ℤRHom‘𝐾)‘(𝐵𝐶)))
1817eqeq1d 2737 . . . . 5 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
19 aks6d1p5.2 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
2019adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℙ)
21 prmnn 16708 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℕ)
2322nnzd 12638 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℤ)
24 dvds0 16306 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝐵 = 𝐶) → 𝑃 ∥ 0)
2611adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 = 𝐶) → 𝐵 ∈ ℂ)
2726subidd 11606 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → (𝐵𝐵) = 0)
2827eqcomd 2741 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → 0 = (𝐵𝐵))
29 simpr 484 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
3029oveq2d 7447 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → (𝐵𝐵) = (𝐵𝐶))
3128, 30eqtrd 2775 . . . . . . . . 9 ((𝜑𝐵 = 𝐶) → 0 = (𝐵𝐶))
3225, 31breqtrd 5174 . . . . . . . 8 ((𝜑𝐵 = 𝐶) → 𝑃 ∥ (𝐵𝐶))
3332ex 412 . . . . . . 7 (𝜑 → (𝐵 = 𝐶𝑃 ∥ (𝐵𝐶)))
3419, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
3534adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝑃 ∈ ℕ)
3635adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℕ)
37 1zzd 12646 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ∈ ℤ)
3836nnzd 12638 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℤ)
3938, 37zsubcld 12725 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝑃 − 1) ∈ ℤ)
4010, 7zsubcld 12725 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐶) ∈ ℤ)
4140ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ ℤ)
42 1e0p1 12773 . . . . . . . . . . . . . 14 1 = (0 + 1)
4342a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 = (0 + 1))
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵)
457zred 12720 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐶 ∈ ℝ)
4746adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ)
4810zred 12720 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
4948adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 ∈ ℝ)
5049adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ)
5147, 50posdifd 11848 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐶 < 𝐵 ↔ 0 < (𝐵𝐶)))
5244, 51mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 < (𝐵𝐶))
53 0zd 12623 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ∈ ℤ)
5453, 41zltp1led 41961 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 < (𝐵𝐶) ↔ (0 + 1) ≤ (𝐵𝐶)))
5552, 54mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 + 1) ≤ (𝐵𝐶))
5643, 55eqbrtrd 5170 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ≤ (𝐵𝐶))
5741zred 12720 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ ℝ)
5836nnred 12279 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℝ)
59 elfzle1 13564 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶)
606, 59syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝐶)
6160adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 0 ≤ 𝐶)
6261adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ≤ 𝐶)
6350, 47subge02d 11853 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 ≤ 𝐶 ↔ (𝐵𝐶) ≤ 𝐵))
6462, 63mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ≤ 𝐵)
65 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
6665nn0red 12586 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
6734nnred 12279 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
68 elfzle2 13565 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0...𝐴) → 𝐵𝐴)
699, 68syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝐴)
70 aks6d1c5.5 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 < 𝑃)
7148, 66, 67, 69, 70lelttrd 11417 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < 𝑃)
7271adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 < 𝑃)
7372adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 < 𝑃)
7457, 50, 58, 64, 73lelttrd 11417 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) < 𝑃)
7541, 38zltlem1d 12669 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ((𝐵𝐶) < 𝑃 ↔ (𝐵𝐶) ≤ (𝑃 − 1)))
7674, 75mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ≤ (𝑃 − 1))
7737, 39, 41, 56, 76elfzd 13552 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ (1...(𝑃 − 1)))
78 fzm1ndvds 16356 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐵𝐶) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐵𝐶))
7936, 77, 78syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵𝐶))
80 simpll 767 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝜑)
81 axlttri 11330 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 < 𝐵)))
8248, 45, 81syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 < 𝐵)))
83 ioran 985 . . . . . . . . . . . . . . . . 17 (¬ (𝐵 = 𝐶𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵))
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ (𝐵 = 𝐶𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)))
8582, 84bitr2d 280 . . . . . . . . . . . . . . 15 (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) ↔ 𝐵 < 𝐶))
8685biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶))
8786imp 406 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)) → 𝐵 < 𝐶)
8887anassrs 467 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶)
8980, 88jca 511 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → (𝜑𝐵 < 𝐶))
9034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℕ)
91 1zzd 12646 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → 1 ∈ ℤ)
9234nnzd 12638 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℤ)
9493, 91zsubcld 12725 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝑃 − 1) ∈ ℤ)
957adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝐶 ∈ ℤ)
9610adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ ℤ)
9795, 96zsubcld 12725 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ ℤ)
9842a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 1 = (0 + 1))
9948, 45posdifd 11848 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶𝐵)))
10099biimpd 229 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 < 𝐶 → 0 < (𝐶𝐵)))
101100imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 0 < (𝐶𝐵))
102 0zd 12623 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 0 ∈ ℤ)
103102, 97zltp1led 41961 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (0 < (𝐶𝐵) ↔ (0 + 1) ≤ (𝐶𝐵)))
104101, 103mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → (0 + 1) ≤ (𝐶𝐵))
10598, 104eqbrtrd 5170 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → 1 ≤ (𝐶𝐵))
10697zred 12720 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ ℝ)
10745adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝐶 ∈ ℝ)
10867adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℝ)
1099adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ (0...𝐴))
110 elfzle1 13564 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0...𝐴) → 0 ≤ 𝐵)
111109, 110syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 0 ≤ 𝐵)
11248adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ ℝ)
113107, 112subge02d 11853 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → (0 ≤ 𝐵 ↔ (𝐶𝐵) ≤ 𝐶))
114111, 113mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ≤ 𝐶)
11566adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐴 ∈ ℝ)
116 elfzle2 13565 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0...𝐴) → 𝐶𝐴)
1176, 116syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶𝐴)
118117adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐶𝐴)
11970adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐴 < 𝑃)
120107, 115, 108, 118, 119lelttrd 11417 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝐶 < 𝑃)
121106, 107, 108, 114, 120lelttrd 11417 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) < 𝑃)
12297, 93zltlem1d 12669 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → ((𝐶𝐵) < 𝑃 ↔ (𝐶𝐵) ≤ (𝑃 − 1)))
123121, 122mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ≤ (𝑃 − 1))
12491, 94, 97, 105, 123elfzd 13552 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ (1...(𝑃 − 1)))
125 fzm1ndvds 16356 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐶𝐵) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐶𝐵))
12690, 124, 125syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐶𝐵))
127 dvdsnegb 16308 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ -(𝐵𝐶)))
12892, 40, 127syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ -(𝐵𝐶)))
12911, 8negsubdi2d 11634 . . . . . . . . . . . . . . 15 (𝜑 → -(𝐵𝐶) = (𝐶𝐵))
130129breq2d 5160 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∥ -(𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
131128, 130bitrd 279 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
132131adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐶) → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
133126, 132mtbird 325 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐵𝐶))
13489, 133syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵𝐶))
13579, 134pm2.61dan 813 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → ¬ 𝑃 ∥ (𝐵𝐶))
136135ex 412 . . . . . . . 8 (𝜑 → (¬ 𝐵 = 𝐶 → ¬ 𝑃 ∥ (𝐵𝐶)))
137136con4d 115 . . . . . . 7 (𝜑 → (𝑃 ∥ (𝐵𝐶) → 𝐵 = 𝐶))
13833, 137impbid 212 . . . . . 6 (𝜑 → (𝐵 = 𝐶𝑃 ∥ (𝐵𝐶)))
139 aks6d1p5.1 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
140139fldcrngd 20759 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
141 crngring 20263 . . . . . . . 8 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
142140, 141syl 17 . . . . . . 7 (𝜑𝐾 ∈ Ring)
143 aks6d1c5.3 . . . . . . . 8 𝑃 = (chr‘𝐾)
144 eqid 2735 . . . . . . . 8 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
145 eqid 2735 . . . . . . . 8 (0g𝐾) = (0g𝐾)
146143, 144, 145chrdvds 21559 . . . . . . 7 ((𝐾 ∈ Ring ∧ (𝐵𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
147142, 40, 146syl2anc 584 . . . . . 6 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
148138, 147bitr2d 280 . . . . 5 (𝜑 → (((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾) ↔ 𝐵 = 𝐶))
14918, 148bitrd 279 . . . 4 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ 𝐵 = 𝐶))
150149bicomd 223 . . 3 (𝜑 → (𝐵 = 𝐶 ↔ ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾)))
151144zrhrhm 21540 . . . . . . 7 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
152 rhmghm 20501 . . . . . . 7 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
153151, 152syl 17 . . . . . 6 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
154142, 153syl 17 . . . . 5 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
155 0zd 12623 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
156155, 7zsubcld 12725 . . . . . 6 (𝜑 → (0 − 𝐶) ∈ ℤ)
157 zringbas 21482 . . . . . 6 ℤ = (Base‘ℤring)
158156, 157eleqtrdi 2849 . . . . 5 (𝜑 → (0 − 𝐶) ∈ (Base‘ℤring))
15910, 157eleqtrdi 2849 . . . . 5 (𝜑𝐵 ∈ (Base‘ℤring))
160 eqid 2735 . . . . . 6 (Base‘ℤring) = (Base‘ℤring)
161 eqid 2735 . . . . . 6 (+g‘ℤring) = (+g‘ℤring)
162 eqid 2735 . . . . . 6 (+g𝐾) = (+g𝐾)
163160, 161, 162ghmlin 19252 . . . . 5 (((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) ∧ (0 − 𝐶) ∈ (Base‘ℤring) ∧ 𝐵 ∈ (Base‘ℤring)) → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
164154, 158, 159, 163syl3anc 1370 . . . 4 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
165164eqeq1d 2737 . . 3 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾)))
166150, 165bitrd 279 . 2 (𝜑 → (𝐵 = 𝐶 ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾)))
167 eqid 2735 . . . . . 6 (eval1𝐾) = (eval1𝐾)
168 eqid 2735 . . . . . 6 (Poly1𝐾) = (Poly1𝐾)
169 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
170 eqid 2735 . . . . . 6 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
171157, 169ghmf 19251 . . . . . . . 8 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
172154, 171syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
173172, 156ffvelcdmd 7105 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝐶)) ∈ (Base‘𝐾))
174 aks6d1c5.6 . . . . . . 7 𝑋 = (var1𝐾)
175167, 174, 169, 168, 170, 140, 173evl1vard 22357 . . . . . 6 (𝜑 → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘(0 − 𝐶))))
176 eqid 2735 . . . . . . 7 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
177172, 10ffvelcdmd 7105 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐾)‘𝐵) ∈ (Base‘𝐾))
178167, 168, 169, 176, 170, 140, 177, 173evl1scad 22355 . . . . . 6 (𝜑 → (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵)))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘𝐵)))
179 eqid 2735 . . . . . 6 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
180167, 168, 169, 170, 140, 173, 175, 178, 179, 162evl1addd 22361 . . . . 5 (𝜑 → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵))))
181180simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
182181eqcomd 2741 . . 3 (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))))
183182eqeq1d 2737 . 2 (𝜑 → ((((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾) ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))
184166, 183bitrd 279 1 (𝜑 → (𝐵 = 𝐶 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  -cneg 11491  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  cdvds 16287  cprime 16705  Basecbs 17245  +gcplusg 17298  0gc0g 17486   Σg cgsu 17487  .gcmg 19098   GrpHom cghm 19243  mulGrpcmgp 20152  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  Fieldcfield 20747  ringczring 21475  ℤRHomczrh 21528  chrcchr 21530  algSccascl 21890  var1cv1 22193  Poly1cpl1 22194  eval1ce1 22334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-prm 16706  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-chr 21534  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-evl1 22336
This theorem is referenced by:  aks6d1c5lem2  42120
  Copyright terms: Public domain W3C validator