Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem1 42097
Description: Lemma for claim 5, evaluate the linear factor at -c to get a root. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p1.1 (𝜑𝐵 ∈ (0...𝐴))
aks6d1c5p1.2 (𝜑𝐶 ∈ (0...𝐴))
Assertion
Ref Expression
aks6d1c5lem1 (𝜑 → (𝐵 = 𝐶 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))

Proof of Theorem aks6d1c5lem1
StepHypRef Expression
1 zringplusg 21340 . . . . . . . . . . 11 + = (+g‘ℤring)
21eqcomi 2738 . . . . . . . . . 10 (+g‘ℤring) = +
32a1i 11 . . . . . . . . 9 (𝜑 → (+g‘ℤring) = + )
43oveqd 7386 . . . . . . . 8 (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = ((0 − 𝐶) + 𝐵))
5 0cnd 11143 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
6 aks6d1c5p1.2 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (0...𝐴))
76elfzelzd 13462 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
87zcnd 12615 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9 aks6d1c5p1.1 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (0...𝐴))
109elfzelzd 13462 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
1110zcnd 12615 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
125, 8, 11subadd23d 11531 . . . . . . . . 9 (𝜑 → ((0 − 𝐶) + 𝐵) = (0 + (𝐵𝐶)))
1311, 8subcld 11509 . . . . . . . . . 10 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413addlidd 11351 . . . . . . . . 9 (𝜑 → (0 + (𝐵𝐶)) = (𝐵𝐶))
1512, 14eqtrd 2764 . . . . . . . 8 (𝜑 → ((0 − 𝐶) + 𝐵) = (𝐵𝐶))
164, 15eqtrd 2764 . . . . . . 7 (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = (𝐵𝐶))
1716fveq2d 6844 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = ((ℤRHom‘𝐾)‘(𝐵𝐶)))
1817eqeq1d 2731 . . . . 5 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
19 aks6d1p5.2 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
2019adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℙ)
21 prmnn 16620 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℕ)
2322nnzd 12532 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℤ)
24 dvds0 16217 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝐵 = 𝐶) → 𝑃 ∥ 0)
2611adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 = 𝐶) → 𝐵 ∈ ℂ)
2726subidd 11497 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → (𝐵𝐵) = 0)
2827eqcomd 2735 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → 0 = (𝐵𝐵))
29 simpr 484 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
3029oveq2d 7385 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → (𝐵𝐵) = (𝐵𝐶))
3128, 30eqtrd 2764 . . . . . . . . 9 ((𝜑𝐵 = 𝐶) → 0 = (𝐵𝐶))
3225, 31breqtrd 5128 . . . . . . . 8 ((𝜑𝐵 = 𝐶) → 𝑃 ∥ (𝐵𝐶))
3332ex 412 . . . . . . 7 (𝜑 → (𝐵 = 𝐶𝑃 ∥ (𝐵𝐶)))
3419, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
3534adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝑃 ∈ ℕ)
3635adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℕ)
37 1zzd 12540 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ∈ ℤ)
3836nnzd 12532 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℤ)
3938, 37zsubcld 12619 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝑃 − 1) ∈ ℤ)
4010, 7zsubcld 12619 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐶) ∈ ℤ)
4140ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ ℤ)
42 1e0p1 12667 . . . . . . . . . . . . . 14 1 = (0 + 1)
4342a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 = (0 + 1))
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵)
457zred 12614 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐶 ∈ ℝ)
4746adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ)
4810zred 12614 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
4948adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 ∈ ℝ)
5049adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ)
5147, 50posdifd 11741 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐶 < 𝐵 ↔ 0 < (𝐵𝐶)))
5244, 51mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 < (𝐵𝐶))
53 0zd 12517 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ∈ ℤ)
5453, 41zltp1led 41940 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 < (𝐵𝐶) ↔ (0 + 1) ≤ (𝐵𝐶)))
5552, 54mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 + 1) ≤ (𝐵𝐶))
5643, 55eqbrtrd 5124 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ≤ (𝐵𝐶))
5741zred 12614 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ ℝ)
5836nnred 12177 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℝ)
59 elfzle1 13464 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶)
606, 59syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝐶)
6160adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 0 ≤ 𝐶)
6261adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ≤ 𝐶)
6350, 47subge02d 11746 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 ≤ 𝐶 ↔ (𝐵𝐶) ≤ 𝐵))
6462, 63mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ≤ 𝐵)
65 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
6665nn0red 12480 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
6734nnred 12177 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
68 elfzle2 13465 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0...𝐴) → 𝐵𝐴)
699, 68syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝐴)
70 aks6d1c5.5 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 < 𝑃)
7148, 66, 67, 69, 70lelttrd 11308 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < 𝑃)
7271adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 < 𝑃)
7372adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 < 𝑃)
7457, 50, 58, 64, 73lelttrd 11308 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) < 𝑃)
7541, 38zltlem1d 12563 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ((𝐵𝐶) < 𝑃 ↔ (𝐵𝐶) ≤ (𝑃 − 1)))
7674, 75mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ≤ (𝑃 − 1))
7737, 39, 41, 56, 76elfzd 13452 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ (1...(𝑃 − 1)))
78 fzm1ndvds 16268 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐵𝐶) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐵𝐶))
7936, 77, 78syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵𝐶))
80 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝜑)
81 axlttri 11221 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 < 𝐵)))
8248, 45, 81syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 < 𝐵)))
83 ioran 985 . . . . . . . . . . . . . . . . 17 (¬ (𝐵 = 𝐶𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵))
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ (𝐵 = 𝐶𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)))
8582, 84bitr2d 280 . . . . . . . . . . . . . . 15 (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) ↔ 𝐵 < 𝐶))
8685biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶))
8786imp 406 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)) → 𝐵 < 𝐶)
8887anassrs 467 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶)
8980, 88jca 511 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → (𝜑𝐵 < 𝐶))
9034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℕ)
91 1zzd 12540 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → 1 ∈ ℤ)
9234nnzd 12532 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℤ)
9493, 91zsubcld 12619 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝑃 − 1) ∈ ℤ)
957adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝐶 ∈ ℤ)
9610adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ ℤ)
9795, 96zsubcld 12619 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ ℤ)
9842a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 1 = (0 + 1))
9948, 45posdifd 11741 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶𝐵)))
10099biimpd 229 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 < 𝐶 → 0 < (𝐶𝐵)))
101100imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 0 < (𝐶𝐵))
102 0zd 12517 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 0 ∈ ℤ)
103102, 97zltp1led 41940 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (0 < (𝐶𝐵) ↔ (0 + 1) ≤ (𝐶𝐵)))
104101, 103mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → (0 + 1) ≤ (𝐶𝐵))
10598, 104eqbrtrd 5124 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → 1 ≤ (𝐶𝐵))
10697zred 12614 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ ℝ)
10745adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝐶 ∈ ℝ)
10867adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℝ)
1099adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ (0...𝐴))
110 elfzle1 13464 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0...𝐴) → 0 ≤ 𝐵)
111109, 110syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 0 ≤ 𝐵)
11248adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ ℝ)
113107, 112subge02d 11746 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → (0 ≤ 𝐵 ↔ (𝐶𝐵) ≤ 𝐶))
114111, 113mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ≤ 𝐶)
11566adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐴 ∈ ℝ)
116 elfzle2 13465 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0...𝐴) → 𝐶𝐴)
1176, 116syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶𝐴)
118117adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐶𝐴)
11970adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐴 < 𝑃)
120107, 115, 108, 118, 119lelttrd 11308 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝐶 < 𝑃)
121106, 107, 108, 114, 120lelttrd 11308 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) < 𝑃)
12297, 93zltlem1d 12563 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → ((𝐶𝐵) < 𝑃 ↔ (𝐶𝐵) ≤ (𝑃 − 1)))
123121, 122mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ≤ (𝑃 − 1))
12491, 94, 97, 105, 123elfzd 13452 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ (1...(𝑃 − 1)))
125 fzm1ndvds 16268 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐶𝐵) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐶𝐵))
12690, 124, 125syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐶𝐵))
127 dvdsnegb 16219 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ -(𝐵𝐶)))
12892, 40, 127syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ -(𝐵𝐶)))
12911, 8negsubdi2d 11525 . . . . . . . . . . . . . . 15 (𝜑 → -(𝐵𝐶) = (𝐶𝐵))
130129breq2d 5114 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∥ -(𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
131128, 130bitrd 279 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
132131adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐶) → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
133126, 132mtbird 325 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐵𝐶))
13489, 133syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵𝐶))
13579, 134pm2.61dan 812 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → ¬ 𝑃 ∥ (𝐵𝐶))
136135ex 412 . . . . . . . 8 (𝜑 → (¬ 𝐵 = 𝐶 → ¬ 𝑃 ∥ (𝐵𝐶)))
137136con4d 115 . . . . . . 7 (𝜑 → (𝑃 ∥ (𝐵𝐶) → 𝐵 = 𝐶))
13833, 137impbid 212 . . . . . 6 (𝜑 → (𝐵 = 𝐶𝑃 ∥ (𝐵𝐶)))
139 aks6d1p5.1 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
140139fldcrngd 20627 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
141 crngring 20130 . . . . . . . 8 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
142140, 141syl 17 . . . . . . 7 (𝜑𝐾 ∈ Ring)
143 aks6d1c5.3 . . . . . . . 8 𝑃 = (chr‘𝐾)
144 eqid 2729 . . . . . . . 8 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
145 eqid 2729 . . . . . . . 8 (0g𝐾) = (0g𝐾)
146143, 144, 145chrdvds 21412 . . . . . . 7 ((𝐾 ∈ Ring ∧ (𝐵𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
147142, 40, 146syl2anc 584 . . . . . 6 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
148138, 147bitr2d 280 . . . . 5 (𝜑 → (((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾) ↔ 𝐵 = 𝐶))
14918, 148bitrd 279 . . . 4 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ 𝐵 = 𝐶))
150149bicomd 223 . . 3 (𝜑 → (𝐵 = 𝐶 ↔ ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾)))
151144zrhrhm 21397 . . . . . . 7 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
152 rhmghm 20369 . . . . . . 7 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
153151, 152syl 17 . . . . . 6 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
154142, 153syl 17 . . . . 5 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
155 0zd 12517 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
156155, 7zsubcld 12619 . . . . . 6 (𝜑 → (0 − 𝐶) ∈ ℤ)
157 zringbas 21339 . . . . . 6 ℤ = (Base‘ℤring)
158156, 157eleqtrdi 2838 . . . . 5 (𝜑 → (0 − 𝐶) ∈ (Base‘ℤring))
15910, 157eleqtrdi 2838 . . . . 5 (𝜑𝐵 ∈ (Base‘ℤring))
160 eqid 2729 . . . . . 6 (Base‘ℤring) = (Base‘ℤring)
161 eqid 2729 . . . . . 6 (+g‘ℤring) = (+g‘ℤring)
162 eqid 2729 . . . . . 6 (+g𝐾) = (+g𝐾)
163160, 161, 162ghmlin 19129 . . . . 5 (((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) ∧ (0 − 𝐶) ∈ (Base‘ℤring) ∧ 𝐵 ∈ (Base‘ℤring)) → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
164154, 158, 159, 163syl3anc 1373 . . . 4 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
165164eqeq1d 2731 . . 3 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾)))
166150, 165bitrd 279 . 2 (𝜑 → (𝐵 = 𝐶 ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾)))
167 eqid 2729 . . . . . 6 (eval1𝐾) = (eval1𝐾)
168 eqid 2729 . . . . . 6 (Poly1𝐾) = (Poly1𝐾)
169 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
170 eqid 2729 . . . . . 6 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
171157, 169ghmf 19128 . . . . . . . 8 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
172154, 171syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
173172, 156ffvelcdmd 7039 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝐶)) ∈ (Base‘𝐾))
174 aks6d1c5.6 . . . . . . 7 𝑋 = (var1𝐾)
175167, 174, 169, 168, 170, 140, 173evl1vard 22200 . . . . . 6 (𝜑 → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘(0 − 𝐶))))
176 eqid 2729 . . . . . . 7 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
177172, 10ffvelcdmd 7039 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐾)‘𝐵) ∈ (Base‘𝐾))
178167, 168, 169, 176, 170, 140, 177, 173evl1scad 22198 . . . . . 6 (𝜑 → (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵)))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘𝐵)))
179 eqid 2729 . . . . . 6 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
180167, 168, 169, 170, 140, 173, 175, 178, 179, 162evl1addd 22204 . . . . 5 (𝜑 → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵))))
181180simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
182181eqcomd 2735 . . 3 (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))))
183182eqeq1d 2731 . 2 (𝜑 → ((((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾) ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))
184166, 183bitrd 279 1 (𝜑 → (𝐵 = 𝐶 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  -cneg 11382  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  cdvds 16198  cprime 16617  Basecbs 17155  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  .gcmg 18975   GrpHom cghm 19120  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  Fieldcfield 20615  ringczring 21332  ℤRHomczrh 21385  chrcchr 21387  algSccascl 21737  var1cv1 22036  Poly1cpl1 22037  eval1ce1 22177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-od 19434  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-field 20617  df-lmod 20744  df-lss 20814  df-lsp 20854  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-chr 21391  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-evl1 22179
This theorem is referenced by:  aks6d1c5lem2  42099
  Copyright terms: Public domain W3C validator