Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem1 42177
Description: Lemma for claim 5, evaluate the linear factor at -c to get a root. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c5p1.1 (𝜑𝐵 ∈ (0...𝐴))
aks6d1c5p1.2 (𝜑𝐶 ∈ (0...𝐴))
Assertion
Ref Expression
aks6d1c5lem1 (𝜑 → (𝐵 = 𝐶 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))

Proof of Theorem aks6d1c5lem1
StepHypRef Expression
1 zringplusg 21391 . . . . . . . . . . 11 + = (+g‘ℤring)
21eqcomi 2740 . . . . . . . . . 10 (+g‘ℤring) = +
32a1i 11 . . . . . . . . 9 (𝜑 → (+g‘ℤring) = + )
43oveqd 7363 . . . . . . . 8 (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = ((0 − 𝐶) + 𝐵))
5 0cnd 11105 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
6 aks6d1c5p1.2 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (0...𝐴))
76elfzelzd 13425 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
87zcnd 12578 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9 aks6d1c5p1.1 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (0...𝐴))
109elfzelzd 13425 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
1110zcnd 12578 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
125, 8, 11subadd23d 11494 . . . . . . . . 9 (𝜑 → ((0 − 𝐶) + 𝐵) = (0 + (𝐵𝐶)))
1311, 8subcld 11472 . . . . . . . . . 10 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413addlidd 11314 . . . . . . . . 9 (𝜑 → (0 + (𝐵𝐶)) = (𝐵𝐶))
1512, 14eqtrd 2766 . . . . . . . 8 (𝜑 → ((0 − 𝐶) + 𝐵) = (𝐵𝐶))
164, 15eqtrd 2766 . . . . . . 7 (𝜑 → ((0 − 𝐶)(+g‘ℤring)𝐵) = (𝐵𝐶))
1716fveq2d 6826 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = ((ℤRHom‘𝐾)‘(𝐵𝐶)))
1817eqeq1d 2733 . . . . 5 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
19 aks6d1p5.2 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
2019adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℙ)
21 prmnn 16585 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℕ)
2322nnzd 12495 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → 𝑃 ∈ ℤ)
24 dvds0 16182 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝐵 = 𝐶) → 𝑃 ∥ 0)
2611adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 = 𝐶) → 𝐵 ∈ ℂ)
2726subidd 11460 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → (𝐵𝐵) = 0)
2827eqcomd 2737 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → 0 = (𝐵𝐵))
29 simpr 484 . . . . . . . . . . 11 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
3029oveq2d 7362 . . . . . . . . . 10 ((𝜑𝐵 = 𝐶) → (𝐵𝐵) = (𝐵𝐶))
3128, 30eqtrd 2766 . . . . . . . . 9 ((𝜑𝐵 = 𝐶) → 0 = (𝐵𝐶))
3225, 31breqtrd 5115 . . . . . . . 8 ((𝜑𝐵 = 𝐶) → 𝑃 ∥ (𝐵𝐶))
3332ex 412 . . . . . . 7 (𝜑 → (𝐵 = 𝐶𝑃 ∥ (𝐵𝐶)))
3419, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
3534adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝑃 ∈ ℕ)
3635adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℕ)
37 1zzd 12503 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ∈ ℤ)
3836nnzd 12495 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℤ)
3938, 37zsubcld 12582 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝑃 − 1) ∈ ℤ)
4010, 7zsubcld 12582 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐶) ∈ ℤ)
4140ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ ℤ)
42 1e0p1 12630 . . . . . . . . . . . . . 14 1 = (0 + 1)
4342a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 = (0 + 1))
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵)
457zred 12577 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐶 ∈ ℝ)
4746adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ)
4810zred 12577 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
4948adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 ∈ ℝ)
5049adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ)
5147, 50posdifd 11704 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐶 < 𝐵 ↔ 0 < (𝐵𝐶)))
5244, 51mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 < (𝐵𝐶))
53 0zd 12480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ∈ ℤ)
5453, 41zltp1led 42020 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 < (𝐵𝐶) ↔ (0 + 1) ≤ (𝐵𝐶)))
5552, 54mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 + 1) ≤ (𝐵𝐶))
5643, 55eqbrtrd 5111 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 1 ≤ (𝐵𝐶))
5741zred 12577 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ ℝ)
5836nnred 12140 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝑃 ∈ ℝ)
59 elfzle1 13427 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶)
606, 59syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝐶)
6160adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 0 ≤ 𝐶)
6261adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 0 ≤ 𝐶)
6350, 47subge02d 11709 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (0 ≤ 𝐶 ↔ (𝐵𝐶) ≤ 𝐵))
6462, 63mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ≤ 𝐵)
65 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
6665nn0red 12443 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
6734nnred 12140 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
68 elfzle2 13428 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0...𝐴) → 𝐵𝐴)
699, 68syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝐴)
70 aks6d1c5.5 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 < 𝑃)
7148, 66, 67, 69, 70lelttrd 11271 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < 𝑃)
7271adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → 𝐵 < 𝑃)
7372adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → 𝐵 < 𝑃)
7457, 50, 58, 64, 73lelttrd 11271 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) < 𝑃)
7541, 38zltlem1d 12526 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ((𝐵𝐶) < 𝑃 ↔ (𝐵𝐶) ≤ (𝑃 − 1)))
7674, 75mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ≤ (𝑃 − 1))
7737, 39, 41, 56, 76elfzd 13415 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → (𝐵𝐶) ∈ (1...(𝑃 − 1)))
78 fzm1ndvds 16233 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐵𝐶) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐵𝐶))
7936, 77, 78syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵𝐶))
80 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝜑)
81 axlttri 11184 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 < 𝐵)))
8248, 45, 81syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 < 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 < 𝐵)))
83 ioran 985 . . . . . . . . . . . . . . . . 17 (¬ (𝐵 = 𝐶𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵))
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ (𝐵 = 𝐶𝐶 < 𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)))
8582, 84bitr2d 280 . . . . . . . . . . . . . . 15 (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) ↔ 𝐵 < 𝐶))
8685biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶))
8786imp 406 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵)) → 𝐵 < 𝐶)
8887anassrs 467 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → 𝐵 < 𝐶)
8980, 88jca 511 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → (𝜑𝐵 < 𝐶))
9034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℕ)
91 1zzd 12503 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → 1 ∈ ℤ)
9234nnzd 12495 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℤ)
9493, 91zsubcld 12582 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝑃 − 1) ∈ ℤ)
957adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝐶 ∈ ℤ)
9610adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ ℤ)
9795, 96zsubcld 12582 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ ℤ)
9842a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → 1 = (0 + 1))
9948, 45posdifd 11704 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 < 𝐶 ↔ 0 < (𝐶𝐵)))
10099biimpd 229 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 < 𝐶 → 0 < (𝐶𝐵)))
101100imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 0 < (𝐶𝐵))
102 0zd 12480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 0 ∈ ℤ)
103102, 97zltp1led 42020 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (0 < (𝐶𝐵) ↔ (0 + 1) ≤ (𝐶𝐵)))
104101, 103mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → (0 + 1) ≤ (𝐶𝐵))
10598, 104eqbrtrd 5111 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → 1 ≤ (𝐶𝐵))
10697zred 12577 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ ℝ)
10745adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝐶 ∈ ℝ)
10867adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝑃 ∈ ℝ)
1099adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ (0...𝐴))
110 elfzle1 13427 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0...𝐴) → 0 ≤ 𝐵)
111109, 110syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 0 ≤ 𝐵)
11248adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵 < 𝐶) → 𝐵 ∈ ℝ)
113107, 112subge02d 11709 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → (0 ≤ 𝐵 ↔ (𝐶𝐵) ≤ 𝐶))
114111, 113mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ≤ 𝐶)
11566adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐴 ∈ ℝ)
116 elfzle2 13428 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0...𝐴) → 𝐶𝐴)
1176, 116syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶𝐴)
118117adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐶𝐴)
11970adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵 < 𝐶) → 𝐴 < 𝑃)
120107, 115, 108, 118, 119lelttrd 11271 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 < 𝐶) → 𝐶 < 𝑃)
121106, 107, 108, 114, 120lelttrd 11271 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) < 𝑃)
12297, 93zltlem1d 12526 . . . . . . . . . . . . . . 15 ((𝜑𝐵 < 𝐶) → ((𝐶𝐵) < 𝑃 ↔ (𝐶𝐵) ≤ (𝑃 − 1)))
123121, 122mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ≤ (𝑃 − 1))
12491, 94, 97, 105, 123elfzd 13415 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐶) → (𝐶𝐵) ∈ (1...(𝑃 − 1)))
125 fzm1ndvds 16233 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐶𝐵) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝐶𝐵))
12690, 124, 125syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐶𝐵))
127 dvdsnegb 16184 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ -(𝐵𝐶)))
12892, 40, 127syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ -(𝐵𝐶)))
12911, 8negsubdi2d 11488 . . . . . . . . . . . . . . 15 (𝜑 → -(𝐵𝐶) = (𝐶𝐵))
130129breq2d 5101 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∥ -(𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
131128, 130bitrd 279 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
132131adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐶) → (𝑃 ∥ (𝐵𝐶) ↔ 𝑃 ∥ (𝐶𝐵)))
133126, 132mtbird 325 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐶) → ¬ 𝑃 ∥ (𝐵𝐶))
13489, 133syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = 𝐶) ∧ ¬ 𝐶 < 𝐵) → ¬ 𝑃 ∥ (𝐵𝐶))
13579, 134pm2.61dan 812 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐶) → ¬ 𝑃 ∥ (𝐵𝐶))
136135ex 412 . . . . . . . 8 (𝜑 → (¬ 𝐵 = 𝐶 → ¬ 𝑃 ∥ (𝐵𝐶)))
137136con4d 115 . . . . . . 7 (𝜑 → (𝑃 ∥ (𝐵𝐶) → 𝐵 = 𝐶))
13833, 137impbid 212 . . . . . 6 (𝜑 → (𝐵 = 𝐶𝑃 ∥ (𝐵𝐶)))
139 aks6d1p5.1 . . . . . . . . 9 (𝜑𝐾 ∈ Field)
140139fldcrngd 20657 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
141 crngring 20163 . . . . . . . 8 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
142140, 141syl 17 . . . . . . 7 (𝜑𝐾 ∈ Ring)
143 aks6d1c5.3 . . . . . . . 8 𝑃 = (chr‘𝐾)
144 eqid 2731 . . . . . . . 8 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
145 eqid 2731 . . . . . . . 8 (0g𝐾) = (0g𝐾)
146143, 144, 145chrdvds 21463 . . . . . . 7 ((𝐾 ∈ Ring ∧ (𝐵𝐶) ∈ ℤ) → (𝑃 ∥ (𝐵𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
147142, 40, 146syl2anc 584 . . . . . 6 (𝜑 → (𝑃 ∥ (𝐵𝐶) ↔ ((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾)))
148138, 147bitr2d 280 . . . . 5 (𝜑 → (((ℤRHom‘𝐾)‘(𝐵𝐶)) = (0g𝐾) ↔ 𝐵 = 𝐶))
14918, 148bitrd 279 . . . 4 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ 𝐵 = 𝐶))
150149bicomd 223 . . 3 (𝜑 → (𝐵 = 𝐶 ↔ ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾)))
151144zrhrhm 21448 . . . . . . 7 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
152 rhmghm 20401 . . . . . . 7 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
153151, 152syl 17 . . . . . 6 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
154142, 153syl 17 . . . . 5 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾))
155 0zd 12480 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
156155, 7zsubcld 12582 . . . . . 6 (𝜑 → (0 − 𝐶) ∈ ℤ)
157 zringbas 21390 . . . . . 6 ℤ = (Base‘ℤring)
158156, 157eleqtrdi 2841 . . . . 5 (𝜑 → (0 − 𝐶) ∈ (Base‘ℤring))
15910, 157eleqtrdi 2841 . . . . 5 (𝜑𝐵 ∈ (Base‘ℤring))
160 eqid 2731 . . . . . 6 (Base‘ℤring) = (Base‘ℤring)
161 eqid 2731 . . . . . 6 (+g‘ℤring) = (+g‘ℤring)
162 eqid 2731 . . . . . 6 (+g𝐾) = (+g𝐾)
163160, 161, 162ghmlin 19133 . . . . 5 (((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) ∧ (0 − 𝐶) ∈ (Base‘ℤring) ∧ 𝐵 ∈ (Base‘ℤring)) → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
164154, 158, 159, 163syl3anc 1373 . . . 4 (𝜑 → ((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
165164eqeq1d 2733 . . 3 (𝜑 → (((ℤRHom‘𝐾)‘((0 − 𝐶)(+g‘ℤring)𝐵)) = (0g𝐾) ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾)))
166150, 165bitrd 279 . 2 (𝜑 → (𝐵 = 𝐶 ↔ (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾)))
167 eqid 2731 . . . . . 6 (eval1𝐾) = (eval1𝐾)
168 eqid 2731 . . . . . 6 (Poly1𝐾) = (Poly1𝐾)
169 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
170 eqid 2731 . . . . . 6 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
171157, 169ghmf 19132 . . . . . . . 8 ((ℤRHom‘𝐾) ∈ (ℤring GrpHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
172154, 171syl 17 . . . . . . 7 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
173172, 156ffvelcdmd 7018 . . . . . 6 (𝜑 → ((ℤRHom‘𝐾)‘(0 − 𝐶)) ∈ (Base‘𝐾))
174 aks6d1c5.6 . . . . . . 7 𝑋 = (var1𝐾)
175167, 174, 169, 168, 170, 140, 173evl1vard 22252 . . . . . 6 (𝜑 → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘(0 − 𝐶))))
176 eqid 2731 . . . . . . 7 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
177172, 10ffvelcdmd 7018 . . . . . . 7 (𝜑 → ((ℤRHom‘𝐾)‘𝐵) ∈ (Base‘𝐾))
178167, 168, 169, 176, 170, 140, 177, 173evl1scad 22250 . . . . . 6 (𝜑 → (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵)))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = ((ℤRHom‘𝐾)‘𝐵)))
179 eqid 2731 . . . . . 6 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
180167, 168, 169, 170, 140, 173, 175, 178, 179, 162evl1addd 22256 . . . . 5 (𝜑 → ((𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵))))
181180simprd 495 . . . 4 (𝜑 → (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)))
182181eqcomd 2737 . . 3 (𝜑 → (((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))))
183182eqeq1d 2733 . 2 (𝜑 → ((((ℤRHom‘𝐾)‘(0 − 𝐶))(+g𝐾)((ℤRHom‘𝐾)‘𝐵)) = (0g𝐾) ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))
184166, 183bitrd 279 1 (𝜑 → (𝐵 = 𝐶 ↔ (((eval1𝐾)‘(𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  -cneg 11345  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cdvds 16163  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  .gcmg 18980   GrpHom cghm 19124  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  Fieldcfield 20645  ringczring 21383  ℤRHomczrh 21436  chrcchr 21438  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  eval1ce1 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-od 19440  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-chr 21442  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-evl1 22231
This theorem is referenced by:  aks6d1c5lem2  42179
  Copyright terms: Public domain W3C validator