MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlem1lt Structured version   Visualization version   GIF version

Theorem zlem1lt 12561
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zlem1lt ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))

Proof of Theorem zlem1lt
StepHypRef Expression
1 peano2zm 12552 . . 3 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2 zltp1le 12559 . . 3 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁))
31, 2sylan 580 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁))
4 zcn 12510 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
5 ax-1cn 11102 . . . . 5 1 ∈ ℂ
6 npcan 11406 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
74, 5, 6sylancl 586 . . . 4 (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀)
87adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) + 1) = 𝑀)
98breq1d 5112 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 − 1) + 1) ≤ 𝑁𝑀𝑁))
103, 9bitr2d 280 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cz 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506
This theorem is referenced by:  nn0lem1lt  12575  nnlem1lt  12576  zbtwnre  12881  uzdisj  13534  nn0disj  13581  fzon  13617  ssfzo12  13696  fzoopth  13699  ceile  13787  cshwidxn  14750  bitsfzolem  16380  bitscmp  16384  bitsinv1lem  16387  hashdvds  16721  logf1o2  26592  ang180lem3  26754  lgsquadlem1  27324  fzsplit3  32766  cos9thpiminplylem1  33765  ballotlemfc0  34477  ballotlemfcc  34478  ballotlemimin  34490  ballotlemfrceq  34513  ballotlemfrcn0  34514  0nn0m1nnn0  35093  poimirlem23  37630  poimirlem24  37631  sticksstones10  42136  irrapxlem3  42805  hashnzfz2  44303  fzdifsuc2  45301  stoweidlem26  46017  fourierdlem12  46110  m1modmmod  47352  fpprel2  47735  nnsum3primesle9  47788  evengpop3  47792  zgtp1leeq  48503  nnolog2flm1  48572
  Copyright terms: Public domain W3C validator