MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlem1lt Structured version   Visualization version   GIF version

Theorem zlem1lt 12592
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zlem1lt ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))

Proof of Theorem zlem1lt
StepHypRef Expression
1 peano2zm 12583 . . 3 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2 zltp1le 12590 . . 3 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁))
31, 2sylan 580 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁))
4 zcn 12541 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
5 ax-1cn 11133 . . . . 5 1 ∈ ℂ
6 npcan 11437 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
74, 5, 6sylancl 586 . . . 4 (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀)
87adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) + 1) = 𝑀)
98breq1d 5120 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 − 1) + 1) ≤ 𝑁𝑀𝑁))
103, 9bitr2d 280 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537
This theorem is referenced by:  nn0lem1lt  12606  nnlem1lt  12607  zbtwnre  12912  uzdisj  13565  nn0disj  13612  fzon  13648  ssfzo12  13727  fzoopth  13730  ceile  13818  cshwidxn  14781  bitsfzolem  16411  bitscmp  16415  bitsinv1lem  16418  hashdvds  16752  logf1o2  26566  ang180lem3  26728  lgsquadlem1  27298  fzsplit3  32723  cos9thpiminplylem1  33779  ballotlemfc0  34491  ballotlemfcc  34492  ballotlemimin  34504  ballotlemfrceq  34527  ballotlemfrcn0  34528  0nn0m1nnn0  35107  poimirlem23  37644  poimirlem24  37645  sticksstones10  42150  irrapxlem3  42819  hashnzfz2  44317  fzdifsuc2  45315  stoweidlem26  46031  fourierdlem12  46124  m1modmmod  47363  fpprel2  47746  nnsum3primesle9  47799  evengpop3  47803  zgtp1leeq  48514  nnolog2flm1  48583
  Copyright terms: Public domain W3C validator