MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlem1lt Structured version   Visualization version   GIF version

Theorem zlem1lt 12649
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zlem1lt ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))

Proof of Theorem zlem1lt
StepHypRef Expression
1 peano2zm 12640 . . 3 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2 zltp1le 12647 . . 3 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁))
31, 2sylan 580 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁))
4 zcn 12598 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
5 ax-1cn 11192 . . . . 5 1 ∈ ℂ
6 npcan 11496 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
74, 5, 6sylancl 586 . . . 4 (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀)
87adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) + 1) = 𝑀)
98breq1d 5134 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 − 1) + 1) ≤ 𝑁𝑀𝑁))
103, 9bitr2d 280 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594
This theorem is referenced by:  nn0lem1lt  12663  nnlem1lt  12664  zbtwnre  12967  uzdisj  13619  nn0disj  13666  fzon  13702  ssfzo12  13780  fzoopth  13783  ceile  13871  cshwidxn  14832  bitsfzolem  16458  bitscmp  16462  bitsinv1lem  16465  hashdvds  16799  logf1o2  26616  ang180lem3  26778  lgsquadlem1  27348  fzsplit3  32775  cos9thpiminplylem1  33821  ballotlemfc0  34530  ballotlemfcc  34531  ballotlemimin  34543  ballotlemfrceq  34566  ballotlemfrcn0  34567  0nn0m1nnn0  35140  poimirlem23  37672  poimirlem24  37673  sticksstones10  42173  irrapxlem3  42814  hashnzfz2  44312  fzdifsuc2  45306  stoweidlem26  46022  fourierdlem12  46115  fpprel2  47722  nnsum3primesle9  47775  evengpop3  47779  zgtp1leeq  48464  m1modmmod  48468  nnolog2flm1  48537
  Copyright terms: Public domain W3C validator