![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlem1lt | Structured version Visualization version GIF version |
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
Ref | Expression |
---|---|
zlem1lt | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 12612 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
2 | zltp1le 12619 | . . 3 ⊢ (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁)) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) < 𝑁 ↔ ((𝑀 − 1) + 1) ≤ 𝑁)) |
4 | zcn 12570 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
5 | ax-1cn 11174 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | npcan 11476 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
7 | 4, 5, 6 | sylancl 585 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) + 1) = 𝑀) |
9 | 8 | breq1d 5158 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 − 1) + 1) ≤ 𝑁 ↔ 𝑀 ≤ 𝑁)) |
10 | 3, 9 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℂcc 11114 1c1 11117 + caddc 11119 < clt 11255 ≤ cle 11256 − cmin 11451 ℤcz 12565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 |
This theorem is referenced by: nn0lem1lt 12634 nnlem1lt 12635 zbtwnre 12937 uzdisj 13581 nn0disj 13624 fzon 13660 ssfzo12 13732 ceile 13821 cshwidxn 14766 bitsfzolem 16382 bitscmp 16386 bitsinv1lem 16389 hashdvds 16715 logf1o2 26499 ang180lem3 26658 lgsquadlem1 27228 fzsplit3 32440 ballotlemfc0 33957 ballotlemfcc 33958 ballotlemimin 33970 ballotlemfrceq 33993 ballotlemfrcn0 33994 0nn0m1nnn0 34568 poimirlem23 36978 poimirlem24 36979 sticksstones10 41441 metakunt7 41461 metakunt18 41472 metakunt30 41484 irrapxlem3 42028 hashnzfz2 43546 fzdifsuc2 44482 stoweidlem26 45204 fourierdlem12 45297 fzoopth 46497 fpprel2 46871 nnsum3primesle9 46924 evengpop3 46928 zgtp1leeq 47367 m1modmmod 47372 nnolog2flm1 47441 |
Copyright terms: Public domain | W3C validator |