MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprmex Structured version   Visualization version   GIF version

Theorem divgcdcoprmex 15587
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑎,𝑏

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 468 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
21anim2i 603 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
3 zeqzmulgcd 15440 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
42, 3syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
543adant3 1126 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
6 zeqzmulgcd 15440 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
76adantlr 694 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
87ancoms 455 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
983adant3 1126 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
10 reeanv 3255 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ (∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
11 zcn 11584 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1211adantl 467 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℂ)
13 gcdcl 15436 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
142, 13syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ0)
1514nn0cnd 11555 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℂ)
16153adant3 1126 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
1716adantr 466 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
1812, 17mulcomd 10263 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑎))
19 simp3 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝑀 = (𝐴 gcd 𝐵))
2019eqcomd 2777 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = 𝑀)
2120oveq1d 6808 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2221adantr 466 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2318, 22eqtrd 2805 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
2423ad2antrr 705 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
25 eqeq1 2775 . . . . . . . . . 10 (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2625adantr 466 . . . . . . . . 9 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2726adantl 467 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2824, 27mpbird 247 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐴 = (𝑀 · 𝑎))
29 simpr 471 . . . . . . . 8 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
302ancomd 453 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
31 gcdcom 15443 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3230, 31syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
33323adant3 1126 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3433oveq2d 6809 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
3534adantr 466 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
36 zcn 11584 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3736adantl 467 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
38143adant3 1126 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
3938adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
4039nn0cnd 11555 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
4137, 40mulcomd 10263 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑏))
4220adantr 466 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = 𝑀)
4342oveq1d 6808 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑏) = (𝑀 · 𝑏))
4435, 41, 433eqtrd 2809 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4544adantlr 694 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4629, 45sylan9eqr 2827 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐵 = (𝑀 · 𝑏))
47 zcn 11584 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
48473ad2ant1 1127 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℂ)
4948ad2antrr 705 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐴 ∈ ℂ)
5012adantr 466 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
51 simp1 1130 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℤ)
5213ad2ant2 1128 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℤ)
5351, 52gcdcld 15438 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5453nn0cnd 11555 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
5554ad2antrr 705 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
56 gcdeq0 15446 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
57 simpr 471 . . . . . . . . . . . . . . . . 17 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
5856, 57syl6bi 243 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 → 𝐵 = 0))
5958necon3d 2964 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≠ 0 → (𝐴 gcd 𝐵) ≠ 0))
6059impr 442 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ≠ 0)
61603adant3 1126 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ≠ 0)
6261ad2antrr 705 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ≠ 0)
6349, 50, 55, 62divmul3d 11037 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
6463bicomd 213 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎))
65 zcn 11584 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
6665adantr 466 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
67663ad2ant2 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℂ)
6867ad2antrr 705 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐵 ∈ ℂ)
6936adantl 467 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
7068, 69, 55, 62divmul3d 11037 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
7123adant3 1126 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
72 gcdcom 15443 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7371, 72syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7473ad2antrr 705 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7574oveq2d 6809 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = (𝑏 · (𝐵 gcd 𝐴)))
7675eqeq2d 2781 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐴 gcd 𝐵)) ↔ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
7770, 76bitr2d 269 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐵 gcd 𝐴)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏))
7864, 77anbi12d 616 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)))
79 3anass 1080 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)))
8079biimpri 218 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
81803adant3 1126 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
82 divgcdcoprm0 15586 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
8381, 82syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
84 oveq12 6802 . . . . . . . . . . . 12 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = (𝑎 gcd 𝑏))
8584eqeq1d 2773 . . . . . . . . . . 11 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ↔ (𝑎 gcd 𝑏) = 1))
8683, 85syl5ibcom 235 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8786ad2antrr 705 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8878, 87sylbid 230 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝑎 gcd 𝑏) = 1))
8988imp 393 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 gcd 𝑏) = 1)
9028, 46, 893jca 1122 . . . . . 6 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
9190ex 397 . . . . 5 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9291reximdva 3165 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9392reximdva 3165 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9410, 93syl5bir 233 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
955, 9, 94mp2and 679 1 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   · cmul 10143   / cdiv 10886  0cn0 11494  cz 11579   gcd cgcd 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425
This theorem is referenced by:  cncongr1  15588
  Copyright terms: Public domain W3C validator