MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprmex Structured version   Visualization version   GIF version

Theorem divgcdcoprmex 15998
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑎,𝑏

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
21anim2i 616 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
3 zeqzmulgcd 15847 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
42, 3syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
543adant3 1124 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
6 zeqzmulgcd 15847 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
76adantlr 711 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
87ancoms 459 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
983adant3 1124 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
10 reeanv 3365 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ (∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
11 zcn 11974 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1211adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℂ)
13 gcdcl 15843 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
142, 13syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ0)
1514nn0cnd 11945 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℂ)
16153adant3 1124 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
1716adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
1812, 17mulcomd 10650 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑎))
19 simp3 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝑀 = (𝐴 gcd 𝐵))
2019eqcomd 2824 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = 𝑀)
2120oveq1d 7160 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2221adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2318, 22eqtrd 2853 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
2423ad2antrr 722 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
25 eqeq1 2822 . . . . . . . . . 10 (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2625adantr 481 . . . . . . . . 9 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2726adantl 482 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2824, 27mpbird 258 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐴 = (𝑀 · 𝑎))
29 simpr 485 . . . . . . . 8 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
302ancomd 462 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
31 gcdcom 15850 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3230, 31syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
33323adant3 1124 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3433oveq2d 7161 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
3534adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
36 zcn 11974 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3736adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
38143adant3 1124 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
3938adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
4039nn0cnd 11945 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
4137, 40mulcomd 10650 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑏))
4220adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = 𝑀)
4342oveq1d 7160 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑏) = (𝑀 · 𝑏))
4435, 41, 433eqtrd 2857 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4544adantlr 711 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4629, 45sylan9eqr 2875 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐵 = (𝑀 · 𝑏))
47 zcn 11974 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
48473ad2ant1 1125 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℂ)
4948ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐴 ∈ ℂ)
5012adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
51 simp1 1128 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℤ)
5213ad2ant2 1126 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℤ)
5351, 52gcdcld 15845 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5453nn0cnd 11945 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
5554ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
56 gcdeq0 15853 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
57 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
5856, 57syl6bi 254 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 → 𝐵 = 0))
5958necon3d 3034 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≠ 0 → (𝐴 gcd 𝐵) ≠ 0))
6059impr 455 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ≠ 0)
61603adant3 1124 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ≠ 0)
6261ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ≠ 0)
6349, 50, 55, 62divmul3d 11438 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
6463bicomd 224 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎))
65 zcn 11974 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
6665adantr 481 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
67663ad2ant2 1126 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℂ)
6867ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐵 ∈ ℂ)
6936adantl 482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
7068, 69, 55, 62divmul3d 11438 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
7123adant3 1124 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
72 gcdcom 15850 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7371, 72syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7473ad2antrr 722 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7574oveq2d 7161 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = (𝑏 · (𝐵 gcd 𝐴)))
7675eqeq2d 2829 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐴 gcd 𝐵)) ↔ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
7770, 76bitr2d 281 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐵 gcd 𝐴)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏))
7864, 77anbi12d 630 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)))
79 3anass 1087 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)))
8079biimpri 229 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
81803adant3 1124 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
82 divgcdcoprm0 15997 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
8381, 82syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
84 oveq12 7154 . . . . . . . . . . . 12 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = (𝑎 gcd 𝑏))
8584eqeq1d 2820 . . . . . . . . . . 11 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ↔ (𝑎 gcd 𝑏) = 1))
8683, 85syl5ibcom 246 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8786ad2antrr 722 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8878, 87sylbid 241 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝑎 gcd 𝑏) = 1))
8988imp 407 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 gcd 𝑏) = 1)
9028, 46, 893jca 1120 . . . . . 6 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
9190ex 413 . . . . 5 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9291reximdva 3271 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9392reximdva 3271 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9410, 93syl5bir 244 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
955, 9, 94mp2and 695 1 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   · cmul 10530   / cdiv 11285  0cn0 11885  cz 11969   gcd cgcd 15831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832
This theorem is referenced by:  cncongr1  15999
  Copyright terms: Public domain W3C validator