MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprmex Structured version   Visualization version   GIF version

Theorem divgcdcoprmex 16299
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑎,𝑏

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
21anim2i 616 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
3 zeqzmulgcd 16145 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
42, 3syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
543adant3 1130 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
6 zeqzmulgcd 16145 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
76adantlr 711 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
87ancoms 458 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
983adant3 1130 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
10 reeanv 3292 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ (∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
11 zcn 12254 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1211adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℂ)
13 gcdcl 16141 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
142, 13syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ0)
1514nn0cnd 12225 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℂ)
16153adant3 1130 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
1716adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
1812, 17mulcomd 10927 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑎))
19 simp3 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝑀 = (𝐴 gcd 𝐵))
2019eqcomd 2744 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = 𝑀)
2120oveq1d 7270 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2221adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2318, 22eqtrd 2778 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
2423ad2antrr 722 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
25 eqeq1 2742 . . . . . . . . . 10 (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2625adantr 480 . . . . . . . . 9 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2726adantl 481 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2824, 27mpbird 256 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐴 = (𝑀 · 𝑎))
29 simpr 484 . . . . . . . 8 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
302ancomd 461 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
31 gcdcom 16148 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3230, 31syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
33323adant3 1130 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3433oveq2d 7271 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
3534adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
36 zcn 12254 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3736adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
38143adant3 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
3938adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
4039nn0cnd 12225 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
4137, 40mulcomd 10927 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑏))
4220adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = 𝑀)
4342oveq1d 7270 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑏) = (𝑀 · 𝑏))
4435, 41, 433eqtrd 2782 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4544adantlr 711 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4629, 45sylan9eqr 2801 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐵 = (𝑀 · 𝑏))
47 zcn 12254 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
48473ad2ant1 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℂ)
4948ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐴 ∈ ℂ)
5012adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
51 simp1 1134 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℤ)
5213ad2ant2 1132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℤ)
5351, 52gcdcld 16143 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5453nn0cnd 12225 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
5554ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
56 gcdeq0 16152 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
57 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
5856, 57syl6bi 252 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 → 𝐵 = 0))
5958necon3d 2963 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≠ 0 → (𝐴 gcd 𝐵) ≠ 0))
6059impr 454 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ≠ 0)
61603adant3 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ≠ 0)
6261ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ≠ 0)
6349, 50, 55, 62divmul3d 11715 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
6463bicomd 222 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎))
65 zcn 12254 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
6665adantr 480 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
67663ad2ant2 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℂ)
6867ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐵 ∈ ℂ)
6936adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
7068, 69, 55, 62divmul3d 11715 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
7123adant3 1130 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
72 gcdcom 16148 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7371, 72syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7473ad2antrr 722 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7574oveq2d 7271 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = (𝑏 · (𝐵 gcd 𝐴)))
7675eqeq2d 2749 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐴 gcd 𝐵)) ↔ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
7770, 76bitr2d 279 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐵 gcd 𝐴)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏))
7864, 77anbi12d 630 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)))
79 3anass 1093 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)))
8079biimpri 227 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
81803adant3 1130 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
82 divgcdcoprm0 16298 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
8381, 82syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
84 oveq12 7264 . . . . . . . . . . . 12 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = (𝑎 gcd 𝑏))
8584eqeq1d 2740 . . . . . . . . . . 11 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ↔ (𝑎 gcd 𝑏) = 1))
8683, 85syl5ibcom 244 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8786ad2antrr 722 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8878, 87sylbid 239 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝑎 gcd 𝑏) = 1))
8988imp 406 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 gcd 𝑏) = 1)
9028, 46, 893jca 1126 . . . . . 6 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
9190ex 412 . . . . 5 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9291reximdva 3202 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9392reximdva 3202 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9410, 93syl5bir 242 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
955, 9, 94mp2and 695 1 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  0cn0 12163  cz 12249   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  cncongr1  16300
  Copyright terms: Public domain W3C validator