![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdssubr | Structured version Visualization version GIF version |
Description: An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
dvdssubr | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 − 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 11862 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) | |
2 | 1 | ancoms 459 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) |
3 | dvdsadd 15473 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℤ) → (𝑀 ∥ (𝑁 − 𝑀) ↔ 𝑀 ∥ (𝑀 + (𝑁 − 𝑀)))) | |
4 | 2, 3 | syldan 591 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑁 − 𝑀) ↔ 𝑀 ∥ (𝑀 + (𝑁 − 𝑀)))) |
5 | zcn 11823 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
6 | zcn 11823 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | pncan3 10730 | . . . 4 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + (𝑁 − 𝑀)) = 𝑁) | |
8 | 5, 6, 7 | syl2an 595 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
9 | 8 | breq2d 4968 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 + (𝑁 − 𝑀)) ↔ 𝑀 ∥ 𝑁)) |
10 | 4, 9 | bitr2d 281 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 − 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 class class class wbr 4956 (class class class)co 7007 ℂcc 10370 + caddc 10375 − cmin 10706 ℤcz 11818 ∥ cdvds 15428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-n0 11735 df-z 11819 df-dvds 15429 |
This theorem is referenced by: ndvdsadd 15582 4sqlem12 16109 4sqlem16 16113 sylow1lem1 18441 |
Copyright terms: Public domain | W3C validator |