Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19lem4 Structured version   Visualization version   GIF version

Theorem jm2.19lem4 41225
Description: Lemma for jm2.19 41226. Extend to ZZ by symmetry. TODO: use zindbi 41179. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.19lem4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))

Proof of Theorem jm2.19lem4
StepHypRef Expression
1 elznn0 12472 . . 3 (𝐼 ∈ ℤ ↔ (𝐼 ∈ ℝ ∧ (𝐼 ∈ ℕ0 ∨ -𝐼 ∈ ℕ0)))
2 jm2.19lem3 41224 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
323expia 1121 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
43adantr 481 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
5 simplll 773 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
6 simprl 769 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
76ad2antrr 724 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑀 ∈ ℤ)
8 simprr 771 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
98ad2antrr 724 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑁 ∈ ℤ)
10 nn0z 12482 . . . . . . . . . . . 12 (-𝐼 ∈ ℕ0 → -𝐼 ∈ ℤ)
1110adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → -𝐼 ∈ ℤ)
12 simplr 767 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
1312recnd 11141 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐼 ∈ ℂ)
14 znegclb 12498 . . . . . . . . . . . 12 (𝐼 ∈ ℂ → (𝐼 ∈ ℤ ↔ -𝐼 ∈ ℤ))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐼 ∈ ℤ ↔ -𝐼 ∈ ℤ))
1611, 15mpbird 256 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐼 ∈ ℤ)
1716, 7zmulcld 12571 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐼 · 𝑀) ∈ ℤ)
189, 17zaddcld 12569 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝑁 + (𝐼 · 𝑀)) ∈ ℤ)
19 simpr 485 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → -𝐼 ∈ ℕ0)
20 jm2.19lem3 41224 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ (𝑁 + (𝐼 · 𝑀)) ∈ ℤ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)))))
215, 7, 18, 19, 20syl121anc 1375 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)))))
22 zcn 12462 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2322ad2antrl 726 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
2423ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑀 ∈ ℂ)
2513, 24mulneg1d 11566 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (-𝐼 · 𝑀) = -(𝐼 · 𝑀))
2625oveq2d 7367 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)) = ((𝑁 + (𝐼 · 𝑀)) + -(𝐼 · 𝑀)))
27 zcn 12462 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2827ad2antll 727 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
2928ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑁 ∈ ℂ)
3013, 24mulcld 11133 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐼 · 𝑀) ∈ ℂ)
3129, 30addcld 11132 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝑁 + (𝐼 · 𝑀)) ∈ ℂ)
3231, 30negsubd 11476 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) + -(𝐼 · 𝑀)) = ((𝑁 + (𝐼 · 𝑀)) − (𝐼 · 𝑀)))
3329, 30pncand 11471 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) − (𝐼 · 𝑀)) = 𝑁)
3426, 32, 333eqtrd 2781 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)) = 𝑁)
3534oveq2d 7367 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀))) = (𝐴 Yrm 𝑁))
3635breq2d 5115 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
3721, 36bitr2d 279 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
3837ex 413 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) → (-𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
394, 38jaod 857 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) → ((𝐼 ∈ ℕ0 ∨ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
4039expimpd 454 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐼 ∈ ℝ ∧ (𝐼 ∈ ℕ0 ∨ -𝐼 ∈ ℕ0)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
411, 40biimtrid 241 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℤ → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
42413impia 1117 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087  wcel 2106   class class class wbr 5103  cfv 6493  (class class class)co 7351  cc 11007  cr 11008   + caddc 11012   · cmul 11014  cmin 11343  -cneg 11344  2c2 12166  0cn0 12371  cz 12457  cuz 12721  cdvds 16096   Yrm crmy 41133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-om 7795  df-1st 7913  df-2nd 7914  df-supp 8085  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-oadd 8408  df-omul 8409  df-er 8606  df-map 8725  df-pm 8726  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fsupp 9264  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9404  df-card 9833  df-acn 9836  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-xnn0 12444  df-z 12458  df-dec 12577  df-uz 12722  df-q 12828  df-rp 12870  df-xneg 12987  df-xadd 12988  df-xmul 12989  df-ioo 13222  df-ioc 13223  df-ico 13224  df-icc 13225  df-fz 13379  df-fzo 13522  df-fl 13651  df-mod 13729  df-seq 13861  df-exp 13922  df-fac 14128  df-bc 14157  df-hash 14185  df-shft 14912  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-limsup 15313  df-clim 15330  df-rlim 15331  df-sum 15531  df-ef 15910  df-sin 15912  df-cos 15913  df-pi 15915  df-dvds 16097  df-gcd 16335  df-numer 16570  df-denom 16571  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-starv 17108  df-sca 17109  df-vsca 17110  df-ip 17111  df-tset 17112  df-ple 17113  df-ds 17115  df-unif 17116  df-hom 17117  df-cco 17118  df-rest 17264  df-topn 17265  df-0g 17283  df-gsum 17284  df-topgen 17285  df-pt 17286  df-prds 17289  df-xrs 17344  df-qtop 17349  df-imas 17350  df-xps 17352  df-mre 17426  df-mrc 17427  df-acs 17429  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-submnd 18562  df-mulg 18832  df-cntz 19056  df-cmn 19523  df-psmet 20741  df-xmet 20742  df-met 20743  df-bl 20744  df-mopn 20745  df-fbas 20746  df-fg 20747  df-cnfld 20750  df-top 22195  df-topon 22212  df-topsp 22234  df-bases 22248  df-cld 22322  df-ntr 22323  df-cls 22324  df-nei 22401  df-lp 22439  df-perf 22440  df-cn 22530  df-cnp 22531  df-haus 22618  df-tx 22865  df-hmeo 23058  df-fil 23149  df-fm 23241  df-flim 23242  df-flf 23243  df-xms 23625  df-ms 23626  df-tms 23627  df-cncf 24193  df-limc 25182  df-dv 25183  df-log 25864  df-squarenn 41073  df-pell1qr 41074  df-pell14qr 41075  df-pell1234qr 41076  df-pellfund 41077  df-rmx 41134  df-rmy 41135
This theorem is referenced by:  jm2.19  41226
  Copyright terms: Public domain W3C validator