Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19lem4 Structured version   Visualization version   GIF version

Theorem jm2.19lem4 38168
Description: Lemma for jm2.19 38169. Extend to ZZ by symmetry. TODO: use zindbi 38120. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.19lem4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))

Proof of Theorem jm2.19lem4
StepHypRef Expression
1 elznn0 11638 . . 3 (𝐼 ∈ ℤ ↔ (𝐼 ∈ ℝ ∧ (𝐼 ∈ ℕ0 ∨ -𝐼 ∈ ℕ0)))
2 jm2.19lem3 38167 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
323expia 1150 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
43adantr 472 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) → (𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
5 simplll 791 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
6 simprl 787 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
76ad2antrr 717 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑀 ∈ ℤ)
8 simprr 789 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
98ad2antrr 717 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑁 ∈ ℤ)
10 nn0z 11646 . . . . . . . . . . . 12 (-𝐼 ∈ ℕ0 → -𝐼 ∈ ℤ)
1110adantl 473 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → -𝐼 ∈ ℤ)
12 simplr 785 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
1312recnd 10321 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐼 ∈ ℂ)
14 znegclb 11660 . . . . . . . . . . . 12 (𝐼 ∈ ℂ → (𝐼 ∈ ℤ ↔ -𝐼 ∈ ℤ))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐼 ∈ ℤ ↔ -𝐼 ∈ ℤ))
1611, 15mpbird 248 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝐼 ∈ ℤ)
1716, 7zmulcld 11734 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐼 · 𝑀) ∈ ℤ)
189, 17zaddcld 11732 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝑁 + (𝐼 · 𝑀)) ∈ ℤ)
19 simpr 477 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → -𝐼 ∈ ℕ0)
20 jm2.19lem3 38167 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ (𝑁 + (𝐼 · 𝑀)) ∈ ℤ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)))))
215, 7, 18, 19, 20syl121anc 1494 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)))))
22 zcn 11628 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2322ad2antrl 719 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℂ)
2423ad2antrr 717 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑀 ∈ ℂ)
2513, 24mulneg1d 10736 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (-𝐼 · 𝑀) = -(𝐼 · 𝑀))
2625oveq2d 6857 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)) = ((𝑁 + (𝐼 · 𝑀)) + -(𝐼 · 𝑀)))
27 zcn 11628 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2827ad2antll 720 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℂ)
2928ad2antrr 717 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → 𝑁 ∈ ℂ)
3013, 24mulcld 10313 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐼 · 𝑀) ∈ ℂ)
3129, 30addcld 10312 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝑁 + (𝐼 · 𝑀)) ∈ ℂ)
3231, 30negsubd 10651 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) + -(𝐼 · 𝑀)) = ((𝑁 + (𝐼 · 𝑀)) − (𝐼 · 𝑀)))
3329, 30pncand 10646 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) − (𝐼 · 𝑀)) = 𝑁)
3426, 32, 333eqtrd 2802 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀)) = 𝑁)
3534oveq2d 6857 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀))) = (𝐴 Yrm 𝑁))
3635breq2d 4820 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm ((𝑁 + (𝐼 · 𝑀)) + (-𝐼 · 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
3721, 36bitr2d 271 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) ∧ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
3837ex 401 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) → (-𝐼 ∈ ℕ0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
394, 38jaod 885 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℝ) → ((𝐼 ∈ ℕ0 ∨ -𝐼 ∈ ℕ0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
4039expimpd 445 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐼 ∈ ℝ ∧ (𝐼 ∈ ℕ0 ∨ -𝐼 ∈ ℕ0)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
411, 40syl5bi 233 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 ∈ ℤ → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀))))))
42413impia 1145 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (𝐼 · 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107  wcel 2155   class class class wbr 4808  cfv 6067  (class class class)co 6841  cc 10186  cr 10187   + caddc 10191   · cmul 10193  cmin 10519  -cneg 10520  2c2 11326  0cn0 11537  cz 11623  cuz 11885  cdvds 15266   Yrm crmy 38075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266  ax-addf 10267  ax-mulf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-iin 4678  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-of 7094  df-om 7263  df-1st 7365  df-2nd 7366  df-supp 7497  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-oadd 7767  df-omul 7768  df-er 7946  df-map 8061  df-pm 8062  df-ixp 8113  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fsupp 8482  df-fi 8523  df-sup 8554  df-inf 8555  df-oi 8621  df-card 9015  df-acn 9018  df-cda 9242  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-xnn0 11610  df-z 11624  df-dec 11740  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-ioo 12380  df-ioc 12381  df-ico 12382  df-icc 12383  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14093  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-limsup 14488  df-clim 14505  df-rlim 14506  df-sum 14703  df-ef 15081  df-sin 15083  df-cos 15084  df-pi 15086  df-dvds 15267  df-gcd 15499  df-numer 15723  df-denom 15724  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-plusg 16228  df-mulr 16229  df-starv 16230  df-sca 16231  df-vsca 16232  df-ip 16233  df-tset 16234  df-ple 16235  df-ds 16237  df-unif 16238  df-hom 16239  df-cco 16240  df-rest 16350  df-topn 16351  df-0g 16369  df-gsum 16370  df-topgen 16371  df-pt 16372  df-prds 16375  df-xrs 16429  df-qtop 16434  df-imas 16435  df-xps 16437  df-mre 16513  df-mrc 16514  df-acs 16516  df-mgm 17509  df-sgrp 17551  df-mnd 17562  df-submnd 17603  df-mulg 17809  df-cntz 18014  df-cmn 18460  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-fbas 20015  df-fg 20016  df-cnfld 20019  df-top 20977  df-topon 20994  df-topsp 21016  df-bases 21029  df-cld 21102  df-ntr 21103  df-cls 21104  df-nei 21181  df-lp 21219  df-perf 21220  df-cn 21310  df-cnp 21311  df-haus 21398  df-tx 21644  df-hmeo 21837  df-fil 21928  df-fm 22020  df-flim 22021  df-flf 22022  df-xms 22403  df-ms 22404  df-tms 22405  df-cncf 22959  df-limc 23920  df-dv 23921  df-log 24593  df-squarenn 38015  df-pell1qr 38016  df-pell14qr 38017  df-pell1234qr 38018  df-pellfund 38019  df-rmx 38076  df-rmy 38077
This theorem is referenced by:  jm2.19  38169
  Copyright terms: Public domain W3C validator