| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnsrng | Structured version Visualization version GIF version | ||
| Description: The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| cnsrng | ⊢ ℂfld ∈ *-Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21330 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 3 | cnfldadd 21332 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
| 5 | cnfldmul 21334 | . . . 4 ⊢ · = (.r‘ℂfld) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
| 7 | cnfldcj 21335 | . . . 4 ⊢ ∗ = (*𝑟‘ℂfld) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ∗ = (*𝑟‘ℂfld)) |
| 9 | cnring 21365 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
| 11 | cjcl 15126 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ) |
| 13 | cjadd 15162 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 + 𝑦)) = ((∗‘𝑥) + (∗‘𝑦))) | |
| 14 | 13 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 + 𝑦)) = ((∗‘𝑥) + (∗‘𝑦))) |
| 15 | mulcom 11223 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 16 | 15 | fveq2d 6890 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 · 𝑦)) = (∗‘(𝑦 · 𝑥))) |
| 17 | cjmul 15163 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (∗‘(𝑦 · 𝑥)) = ((∗‘𝑦) · (∗‘𝑥))) | |
| 18 | 17 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑦 · 𝑥)) = ((∗‘𝑦) · (∗‘𝑥))) |
| 19 | 16, 18 | eqtrd 2769 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 · 𝑦)) = ((∗‘𝑦) · (∗‘𝑥))) |
| 20 | 19 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 · 𝑦)) = ((∗‘𝑦) · (∗‘𝑥))) |
| 21 | cjcj 15161 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘(∗‘𝑥)) = 𝑥) | |
| 22 | 21 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (∗‘(∗‘𝑥)) = 𝑥) |
| 23 | 2, 4, 6, 8, 10, 12, 14, 20, 22 | issrngd 20824 | . 2 ⊢ (⊤ → ℂfld ∈ *-Ring) |
| 24 | 23 | mptru 1546 | 1 ⊢ ℂfld ∈ *-Ring |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 + caddc 11140 · cmul 11142 ∗ccj 15117 Basecbs 17229 +gcplusg 17273 .rcmulr 17274 *𝑟cstv 17275 Ringcrg 20198 *-Ringcsr 20807 ℂfldccnfld 21326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-cj 15120 df-re 15121 df-im 15122 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-plusg 17286 df-mulr 17287 df-starv 17288 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-grp 18923 df-minusg 18924 df-ghm 19200 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-rhm 20440 df-staf 20808 df-srng 20809 df-cnfld 21327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |