![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnsrng | Structured version Visualization version GIF version |
Description: The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
cnsrng | ⊢ ℂfld ∈ *-Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20069 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
3 | cnfldadd 20070 | . . . 4 ⊢ + = (+g‘ℂfld) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
5 | cnfldmul 20071 | . . . 4 ⊢ · = (.r‘ℂfld) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
7 | cnfldcj 20072 | . . . 4 ⊢ ∗ = (*𝑟‘ℂfld) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ∗ = (*𝑟‘ℂfld)) |
9 | cnring 20087 | . . . 4 ⊢ ℂfld ∈ Ring | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
11 | cjcl 14183 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ) | |
12 | 11 | adantl 474 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ) |
13 | cjadd 14219 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 + 𝑦)) = ((∗‘𝑥) + (∗‘𝑦))) | |
14 | 13 | 3adant1 1161 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 + 𝑦)) = ((∗‘𝑥) + (∗‘𝑦))) |
15 | mulcom 10308 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
16 | 15 | fveq2d 6413 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 · 𝑦)) = (∗‘(𝑦 · 𝑥))) |
17 | cjmul 14220 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (∗‘(𝑦 · 𝑥)) = ((∗‘𝑦) · (∗‘𝑥))) | |
18 | 17 | ancoms 451 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑦 · 𝑥)) = ((∗‘𝑦) · (∗‘𝑥))) |
19 | 16, 18 | eqtrd 2831 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 · 𝑦)) = ((∗‘𝑦) · (∗‘𝑥))) |
20 | 19 | 3adant1 1161 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (∗‘(𝑥 · 𝑦)) = ((∗‘𝑦) · (∗‘𝑥))) |
21 | cjcj 14218 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘(∗‘𝑥)) = 𝑥) | |
22 | 21 | adantl 474 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (∗‘(∗‘𝑥)) = 𝑥) |
23 | 2, 4, 6, 8, 10, 12, 14, 20, 22 | issrngd 19176 | . 2 ⊢ (⊤ → ℂfld ∈ *-Ring) |
24 | 23 | mptru 1661 | 1 ⊢ ℂfld ∈ *-Ring |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 ℂcc 10220 + caddc 10225 · cmul 10227 ∗ccj 14174 Basecbs 16181 +gcplusg 16264 .rcmulr 16265 *𝑟cstv 16266 Ringcrg 18860 *-Ringcsr 19159 ℂfldccnfld 20065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-tpos 7588 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-cj 14177 df-re 14178 df-im 14179 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-plusg 16277 df-mulr 16278 df-starv 16279 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-grp 17738 df-ghm 17968 df-cmn 18507 df-mgp 18803 df-ur 18815 df-ring 18862 df-cring 18863 df-oppr 18936 df-rnghom 19030 df-staf 19160 df-srng 19161 df-cnfld 20066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |