![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem23 | Structured version Visualization version GIF version |
Description: If 𝐹 is continuous and 𝑋 is constant, then (𝐹‘(𝑋 + 𝑠)) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem23.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
fourierdlem23.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
fourierdlem23.b | ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
fourierdlem23.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
fourierdlem23.xps | ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑋 + 𝑠) ∈ 𝐴) |
Ref | Expression |
---|---|
fourierdlem23 | ⊢ (𝜑 → (𝑠 ∈ 𝐵 ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (𝐵–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (𝑠 ∈ 𝐵 ↦ (𝑋 + 𝑠)) = (𝑠 ∈ 𝐵 ↦ (𝑋 + 𝑠)) | |
2 | fourierdlem23.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) | |
3 | fourierdlem23.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
4 | 1 | addccncf2 44203 | . . . 4 ⊢ ((𝐵 ⊆ ℂ ∧ 𝑋 ∈ ℂ) → (𝑠 ∈ 𝐵 ↦ (𝑋 + 𝑠)) ∈ (𝐵–cn→ℂ)) |
5 | 2, 3, 4 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝑠 ∈ 𝐵 ↦ (𝑋 + 𝑠)) ∈ (𝐵–cn→ℂ)) |
6 | ssid 3967 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐵) |
8 | fourierdlem23.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
9 | fourierdlem23.xps | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑋 + 𝑠) ∈ 𝐴) | |
10 | 1, 5, 7, 8, 9 | cncfmptssg 44198 | . 2 ⊢ (𝜑 → (𝑠 ∈ 𝐵 ↦ (𝑋 + 𝑠)) ∈ (𝐵–cn→𝐴)) |
11 | fourierdlem23.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
12 | 10, 11 | cncfcompt 44210 | 1 ⊢ (𝜑 → (𝑠 ∈ 𝐵 ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (𝐵–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3911 ↦ cmpt 5189 ‘cfv 6497 (class class class)co 7358 ℂcc 11054 + caddc 11059 –cn→ccncf 24255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 ax-addf 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-er 8651 df-map 8770 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-fi 9352 df-sup 9383 df-inf 9384 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-q 12879 df-rp 12921 df-xneg 13038 df-xadd 13039 df-xmul 13040 df-icc 13277 df-fz 13431 df-fzo 13574 df-seq 13913 df-exp 13974 df-hash 14237 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-starv 17153 df-sca 17154 df-vsca 17155 df-ip 17156 df-tset 17157 df-ple 17158 df-ds 17160 df-unif 17161 df-hom 17162 df-cco 17163 df-rest 17309 df-topn 17310 df-0g 17328 df-gsum 17329 df-topgen 17330 df-pt 17331 df-prds 17334 df-xrs 17389 df-qtop 17394 df-imas 17395 df-xps 17397 df-mre 17471 df-mrc 17472 df-acs 17474 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-submnd 18607 df-mulg 18878 df-cntz 19102 df-cmn 19569 df-psmet 20804 df-xmet 20805 df-met 20806 df-bl 20807 df-mopn 20808 df-cnfld 20813 df-top 22259 df-topon 22276 df-topsp 22298 df-bases 22312 df-cn 22594 df-cnp 22595 df-tx 22929 df-hmeo 23122 df-xms 23689 df-ms 23690 df-tms 23691 df-cncf 24257 |
This theorem is referenced by: fourierdlem40 44474 fourierdlem59 44492 fourierdlem76 44509 fourierdlem78 44511 fourierdlem84 44517 |
Copyright terms: Public domain | W3C validator |