![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decmac | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two numerals ๐ and ๐ against a fixed multiplicand ๐ (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decma.a | โข ๐ด โ โ0 |
decma.b | โข ๐ต โ โ0 |
decma.c | โข ๐ถ โ โ0 |
decma.d | โข ๐ท โ โ0 |
decma.m | โข ๐ = ;๐ด๐ต |
decma.n | โข ๐ = ;๐ถ๐ท |
decmac.p | โข ๐ โ โ0 |
decmac.f | โข ๐น โ โ0 |
decmac.g | โข ๐บ โ โ0 |
decmac.e | โข ((๐ด ยท ๐) + (๐ถ + ๐บ)) = ๐ธ |
decmac.2 | โข ((๐ต ยท ๐) + ๐ท) = ;๐บ๐น |
Ref | Expression |
---|---|
decmac | โข ((๐ ยท ๐) + ๐) = ;๐ธ๐น |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12699 | . . 3 โข ;10 โ โ0 | |
2 | decma.a | . . 3 โข ๐ด โ โ0 | |
3 | decma.b | . . 3 โข ๐ต โ โ0 | |
4 | decma.c | . . 3 โข ๐ถ โ โ0 | |
5 | decma.d | . . 3 โข ๐ท โ โ0 | |
6 | decma.m | . . . 4 โข ๐ = ;๐ด๐ต | |
7 | dfdec10 12684 | . . . 4 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
8 | 6, 7 | eqtri 2758 | . . 3 โข ๐ = ((;10 ยท ๐ด) + ๐ต) |
9 | decma.n | . . . 4 โข ๐ = ;๐ถ๐ท | |
10 | dfdec10 12684 | . . . 4 โข ;๐ถ๐ท = ((;10 ยท ๐ถ) + ๐ท) | |
11 | 9, 10 | eqtri 2758 | . . 3 โข ๐ = ((;10 ยท ๐ถ) + ๐ท) |
12 | decmac.p | . . 3 โข ๐ โ โ0 | |
13 | decmac.f | . . 3 โข ๐น โ โ0 | |
14 | decmac.g | . . 3 โข ๐บ โ โ0 | |
15 | decmac.e | . . 3 โข ((๐ด ยท ๐) + (๐ถ + ๐บ)) = ๐ธ | |
16 | decmac.2 | . . . 4 โข ((๐ต ยท ๐) + ๐ท) = ;๐บ๐น | |
17 | dfdec10 12684 | . . . 4 โข ;๐บ๐น = ((;10 ยท ๐บ) + ๐น) | |
18 | 16, 17 | eqtri 2758 | . . 3 โข ((๐ต ยท ๐) + ๐ท) = ((;10 ยท ๐บ) + ๐น) |
19 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18 | nummac 12726 | . 2 โข ((๐ ยท ๐) + ๐) = ((;10 ยท ๐ธ) + ๐น) |
20 | dfdec10 12684 | . 2 โข ;๐ธ๐น = ((;10 ยท ๐ธ) + ๐น) | |
21 | 19, 20 | eqtr4i 2761 | 1 โข ((๐ ยท ๐) + ๐) = ;๐ธ๐น |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 โ wcel 2104 (class class class)co 7411 0cc0 11112 1c1 11113 + caddc 11115 ยท cmul 11117 โ0cn0 12476 ;cdc 12681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-dec 12682 |
This theorem is referenced by: decrmac 12739 2exp16 17028 37prm 17058 43prm 17059 83prm 17060 139prm 17061 163prm 17062 317prm 17063 631prm 17064 1259lem1 17068 1259lem2 17069 1259lem3 17070 1259lem4 17071 1259lem5 17072 1259prm 17073 2503lem1 17074 2503lem2 17075 2503lem3 17076 2503prm 17077 4001lem1 17078 4001lem2 17079 4001lem3 17080 log2ublem3 26689 log2ub 26690 3exp7 41224 3lexlogpow5ineq1 41225 3lexlogpow5ineq5 41231 aks4d1p1 41247 235t711 41507 257prm 46527 139prmALT 46562 127prm 46565 |
Copyright terms: Public domain | W3C validator |