Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decmac | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decma.a | ⊢ 𝐴 ∈ ℕ0 |
decma.b | ⊢ 𝐵 ∈ ℕ0 |
decma.c | ⊢ 𝐶 ∈ ℕ0 |
decma.d | ⊢ 𝐷 ∈ ℕ0 |
decma.m | ⊢ 𝑀 = ;𝐴𝐵 |
decma.n | ⊢ 𝑁 = ;𝐶𝐷 |
decmac.p | ⊢ 𝑃 ∈ ℕ0 |
decmac.f | ⊢ 𝐹 ∈ ℕ0 |
decmac.g | ⊢ 𝐺 ∈ ℕ0 |
decmac.e | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
decmac.2 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 |
Ref | Expression |
---|---|
decmac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12168 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decma.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
3 | decma.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
4 | decma.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
5 | decma.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
6 | decma.m | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
7 | dfdec10 12153 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
8 | 6, 7 | eqtri 2781 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
9 | decma.n | . . . 4 ⊢ 𝑁 = ;𝐶𝐷 | |
10 | dfdec10 12153 | . . . 4 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
11 | 9, 10 | eqtri 2781 | . . 3 ⊢ 𝑁 = ((;10 · 𝐶) + 𝐷) |
12 | decmac.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
13 | decmac.f | . . 3 ⊢ 𝐹 ∈ ℕ0 | |
14 | decmac.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
15 | decmac.e | . . 3 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
16 | decmac.2 | . . . 4 ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 | |
17 | dfdec10 12153 | . . . 4 ⊢ ;𝐺𝐹 = ((;10 · 𝐺) + 𝐹) | |
18 | 16, 17 | eqtri 2781 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((;10 · 𝐺) + 𝐹) |
19 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18 | nummac 12195 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((;10 · 𝐸) + 𝐹) |
20 | dfdec10 12153 | . 2 ⊢ ;𝐸𝐹 = ((;10 · 𝐸) + 𝐹) | |
21 | 19, 20 | eqtr4i 2784 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 (class class class)co 7156 0cc0 10588 1c1 10589 + caddc 10591 · cmul 10593 ℕ0cn0 11947 ;cdc 12150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-ltxr 10731 df-sub 10923 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-dec 12151 |
This theorem is referenced by: decrmac 12208 2exp16 16496 37prm 16526 43prm 16527 83prm 16528 139prm 16529 163prm 16530 317prm 16531 631prm 16532 1259lem1 16536 1259lem2 16537 1259lem3 16538 1259lem4 16539 1259lem5 16540 1259prm 16541 2503lem1 16542 2503lem2 16543 2503lem3 16544 2503prm 16545 4001lem1 16546 4001lem2 16547 4001lem3 16548 log2ublem3 25647 log2ub 25648 3exp7 39655 3lexlogpow5ineq1 39656 3lexlogpow5ineq5 39662 aks4d1p1 39677 235t711 39860 257prm 44505 139prmALT 44540 127prm 44543 |
Copyright terms: Public domain | W3C validator |