MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decmac Structured version   Visualization version   GIF version

Theorem decmac 12004
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decmac.p 𝑃 ∈ ℕ0
decmac.f 𝐹 ∈ ℕ0
decmac.g 𝐺 ∈ ℕ0
decmac.e ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
decmac.2 ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹
Assertion
Ref Expression
decmac ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decmac
StepHypRef Expression
1 10nn0 11970 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 11955 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2819 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 11955 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2819 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decmac.p . . 3 𝑃 ∈ ℕ0
13 decmac.f . . 3 𝐹 ∈ ℕ0
14 decmac.g . . 3 𝐺 ∈ ℕ0
15 decmac.e . . 3 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
16 decmac.2 . . . 4 ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹
17 dfdec10 11955 . . . 4 𝐺𝐹 = ((10 · 𝐺) + 𝐹)
1816, 17eqtri 2819 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((10 · 𝐺) + 𝐹)
191, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18nummac 11997 . 2 ((𝑀 · 𝑃) + 𝑁) = ((10 · 𝐸) + 𝐹)
20 dfdec10 11955 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
2119, 20eqtr4i 2822 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wcel 2081  (class class class)co 7021  0cc0 10388  1c1 10389   + caddc 10391   · cmul 10393  0cn0 11750  cdc 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-ltxr 10531  df-sub 10724  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-dec 11953
This theorem is referenced by:  decrmac  12010  2exp16  16258  37prm  16288  43prm  16289  83prm  16290  139prm  16291  163prm  16292  317prm  16293  631prm  16294  1259lem1  16298  1259lem2  16299  1259lem3  16300  1259lem4  16301  1259lem5  16302  1259prm  16303  2503lem1  16304  2503lem2  16305  2503lem3  16306  2503prm  16307  4001lem1  16308  4001lem2  16309  4001lem3  16310  log2ublem3  25213  log2ub  25214  235t711  38724  257prm  43231  139prmALT  43267  127prm  43271
  Copyright terms: Public domain W3C validator