![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngcatALTV | Structured version Visualization version GIF version |
Description: The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
drhmsubcALTV.c | β’ πΆ = (π β© DivRing) |
drhmsubcALTV.j | β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) |
Ref | Expression |
---|---|
drngcatALTV | β’ (π β π β ((RingCatALTVβπ) βΎcat π½) β Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 20633 | . . 3 β’ (π β DivRing β π β Ring) | |
2 | 1 | rgen 3053 | . 2 β’ βπ β DivRing π β Ring |
3 | drhmsubcALTV.c | . 2 β’ πΆ = (π β© DivRing) | |
4 | drhmsubcALTV.j | . 2 β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) | |
5 | 2, 3, 4 | sringcatALTV 47499 | 1 β’ (π β π β ((RingCatALTVβπ) βΎcat π½) β Cat) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β© cin 3939 βcfv 6542 (class class class)co 7415 β cmpo 7417 Catccat 17641 βΎcat cresc 17788 Ringcrg 20175 RingHom crh 20410 DivRingcdr 20626 RingCatALTVcringcALTV 47460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-pm 8844 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-hom 17254 df-cco 17255 df-0g 17420 df-cat 17645 df-cid 17646 df-homf 17647 df-ssc 17790 df-resc 17791 df-subc 17792 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-grp 18895 df-ghm 19170 df-mgp 20077 df-ur 20124 df-ring 20177 df-rhm 20413 df-drng 20628 df-ringcALTV 47461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |