Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ig1prsp | Structured version Visualization version GIF version |
Description: Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
ig1pcl.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
ig1prsp.k | ⊢ 𝐾 = (RSpan‘𝑃) |
Ref | Expression |
---|---|
ig1prsp | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 = (𝐾‘{(𝐺‘𝐼)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ig1pval.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ig1pval.g | . . 3 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
3 | ig1pcl.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑃) | |
4 | 1, 2, 3 | ig1pcl 25073 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) |
5 | eqid 2737 | . . . . 5 ⊢ (∥r‘𝑃) = (∥r‘𝑃) | |
6 | 1, 2, 3, 5 | ig1pdvds 25074 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝐼)(∥r‘𝑃)𝑥) |
7 | 6 | 3expa 1120 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝐼)(∥r‘𝑃)𝑥) |
8 | 7 | ralrimiva 3105 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐼 (𝐺‘𝐼)(∥r‘𝑃)𝑥) |
9 | drngring 19774 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
10 | 1 | ply1ring 21169 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Ring) |
12 | 11 | adantr 484 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝑃 ∈ Ring) |
13 | simpr 488 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
14 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
15 | 14, 3 | lidlss 20248 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
16 | 15 | adantl 485 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑃)) |
17 | 16, 4 | sseldd 3902 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ (Base‘𝑃)) |
18 | ig1prsp.k | . . . 4 ⊢ 𝐾 = (RSpan‘𝑃) | |
19 | 14, 3, 18, 5 | lidldvgen 20293 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ (𝐺‘𝐼) ∈ (Base‘𝑃)) → (𝐼 = (𝐾‘{(𝐺‘𝐼)}) ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐺‘𝐼)(∥r‘𝑃)𝑥))) |
20 | 12, 13, 17, 19 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐼 = (𝐾‘{(𝐺‘𝐼)}) ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐺‘𝐼)(∥r‘𝑃)𝑥))) |
21 | 4, 8, 20 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 = (𝐾‘{(𝐺‘𝐼)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ⊆ wss 3866 {csn 4541 class class class wbr 5053 ‘cfv 6380 Basecbs 16760 Ringcrg 19562 ∥rcdsr 19656 DivRingcdr 19767 LIdealclidl 20207 RSpancrsp 20208 Poly1cpl1 21098 idlGen1pcig1p 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-ofr 7470 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-0g 16946 df-gsum 16947 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-ghm 18620 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-drng 19769 df-subrg 19798 df-lmod 19901 df-lss 19969 df-lsp 20009 df-sra 20209 df-rgmod 20210 df-lidl 20211 df-rsp 20212 df-rlreg 20321 df-cnfld 20364 df-ascl 20817 df-psr 20868 df-mvr 20869 df-mpl 20870 df-opsr 20872 df-psr1 21101 df-vr1 21102 df-ply1 21103 df-coe1 21104 df-mdeg 24950 df-deg1 24951 df-mon1 25028 df-uc1p 25029 df-q1p 25030 df-r1p 25031 df-ig1p 25032 |
This theorem is referenced by: ply1lpir 25076 |
Copyright terms: Public domain | W3C validator |