MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1prsp Structured version   Visualization version   GIF version

Theorem ig1prsp 26084
Description: Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pcl.u 𝑈 = (LIdeal‘𝑃)
ig1prsp.k 𝐾 = (RSpan‘𝑃)
Assertion
Ref Expression
ig1prsp ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → 𝐼 = (𝐾‘{(𝐺𝐼)}))

Proof of Theorem ig1prsp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ig1pval.p . . 3 𝑃 = (Poly1𝑅)
2 ig1pval.g . . 3 𝐺 = (idlGen1p𝑅)
3 ig1pcl.u . . 3 𝑈 = (LIdeal‘𝑃)
41, 2, 3ig1pcl 26082 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
5 eqid 2729 . . . . 5 (∥r𝑃) = (∥r𝑃)
61, 2, 3, 5ig1pdvds 26083 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑥𝐼) → (𝐺𝐼)(∥r𝑃)𝑥)
763expa 1118 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈) ∧ 𝑥𝐼) → (𝐺𝐼)(∥r𝑃)𝑥)
87ralrimiva 3121 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → ∀𝑥𝐼 (𝐺𝐼)(∥r𝑃)𝑥)
9 drngring 20621 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
101ply1ring 22130 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
119, 10syl 17 . . . 4 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
1211adantr 480 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → 𝑃 ∈ Ring)
13 simpr 484 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → 𝐼𝑈)
14 eqid 2729 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
1514, 3lidlss 21119 . . . . 5 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
1615adantl 481 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → 𝐼 ⊆ (Base‘𝑃))
1716, 4sseldd 3936 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ (Base‘𝑃))
18 ig1prsp.k . . . 4 𝐾 = (RSpan‘𝑃)
1914, 3, 18, 5lidldvgen 21241 . . 3 ((𝑃 ∈ Ring ∧ 𝐼𝑈 ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝐼 = (𝐾‘{(𝐺𝐼)}) ↔ ((𝐺𝐼) ∈ 𝐼 ∧ ∀𝑥𝐼 (𝐺𝐼)(∥r𝑃)𝑥)))
2012, 13, 17, 19syl3anc 1373 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐼 = (𝐾‘{(𝐺𝐼)}) ↔ ((𝐺𝐼) ∈ 𝐼 ∧ ∀𝑥𝐼 (𝐺𝐼)(∥r𝑃)𝑥)))
214, 8, 20mpbir2and 713 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → 𝐼 = (𝐾‘{(𝐺𝐼)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  {csn 4577   class class class wbr 5092  cfv 6482  Basecbs 17120  Ringcrg 20118  rcdsr 20239  DivRingcdr 20614  LIdealclidl 21113  RSpancrsp 21114  Poly1cpl1 22059  idlGen1pcig1p 26033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-cnfld 21262  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-ig1p 26038
This theorem is referenced by:  ply1lpir  26085  ply1annig1p  33671
  Copyright terms: Public domain W3C validator