![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ig1prsp | Structured version Visualization version GIF version |
Description: Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
ig1pcl.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
ig1prsp.k | ⊢ 𝐾 = (RSpan‘𝑃) |
Ref | Expression |
---|---|
ig1prsp | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 = (𝐾‘{(𝐺‘𝐼)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ig1pval.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ig1pval.g | . . 3 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
3 | ig1pcl.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑃) | |
4 | 1, 2, 3 | ig1pcl 24341 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) |
5 | eqid 2825 | . . . . 5 ⊢ (∥r‘𝑃) = (∥r‘𝑃) | |
6 | 1, 2, 3, 5 | ig1pdvds 24342 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝐼)(∥r‘𝑃)𝑥) |
7 | 6 | 3expa 1151 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝐼)(∥r‘𝑃)𝑥) |
8 | 7 | ralrimiva 3175 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐼 (𝐺‘𝐼)(∥r‘𝑃)𝑥) |
9 | drngring 19117 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
10 | 1 | ply1ring 19985 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Ring) |
12 | 11 | adantr 474 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝑃 ∈ Ring) |
13 | simpr 479 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
14 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
15 | 14, 3 | lidlss 19578 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
16 | 15 | adantl 475 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑃)) |
17 | 16, 4 | sseldd 3828 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ (Base‘𝑃)) |
18 | ig1prsp.k | . . . 4 ⊢ 𝐾 = (RSpan‘𝑃) | |
19 | 14, 3, 18, 5 | lidldvgen 19623 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ (𝐺‘𝐼) ∈ (Base‘𝑃)) → (𝐼 = (𝐾‘{(𝐺‘𝐼)}) ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐺‘𝐼)(∥r‘𝑃)𝑥))) |
20 | 12, 13, 17, 19 | syl3anc 1494 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐼 = (𝐾‘{(𝐺‘𝐼)}) ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐺‘𝐼)(∥r‘𝑃)𝑥))) |
21 | 4, 8, 20 | mpbir2and 704 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 = (𝐾‘{(𝐺‘𝐼)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 {csn 4399 class class class wbr 4875 ‘cfv 6127 Basecbs 16229 Ringcrg 18908 ∥rcdsr 18999 DivRingcdr 19110 LIdealclidl 19538 RSpancrsp 19539 Poly1cpl1 19914 idlGen1pcig1p 24295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-ofr 7163 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-tpos 7622 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-fz 12627 df-fzo 12768 df-seq 13103 df-hash 13418 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-0g 16462 df-gsum 16463 df-mre 16606 df-mrc 16607 df-acs 16609 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-mhm 17695 df-submnd 17696 df-grp 17786 df-minusg 17787 df-sbg 17788 df-mulg 17902 df-subg 17949 df-ghm 18016 df-cntz 18107 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-invr 19033 df-drng 19112 df-subrg 19141 df-lmod 19228 df-lss 19296 df-lsp 19338 df-sra 19540 df-rgmod 19541 df-lidl 19542 df-rsp 19543 df-rlreg 19651 df-ascl 19682 df-psr 19724 df-mvr 19725 df-mpl 19726 df-opsr 19728 df-psr1 19917 df-vr1 19918 df-ply1 19919 df-coe1 19920 df-cnfld 20114 df-mdeg 24221 df-deg1 24222 df-mon1 24296 df-uc1p 24297 df-q1p 24298 df-r1p 24299 df-ig1p 24300 |
This theorem is referenced by: ply1lpir 24344 |
Copyright terms: Public domain | W3C validator |