MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngmul0or Structured version   Visualization version   GIF version

Theorem drngmul0or 19816
Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.)
Hypotheses
Ref Expression
drngmuleq0.b 𝐵 = (Base‘𝑅)
drngmuleq0.o 0 = (0g𝑅)
drngmuleq0.t · = (.r𝑅)
drngmuleq0.r (𝜑𝑅 ∈ DivRing)
drngmuleq0.x (𝜑𝑋𝐵)
drngmuleq0.y (𝜑𝑌𝐵)
Assertion
Ref Expression
drngmul0or (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem drngmul0or
StepHypRef Expression
1 df-ne 2942 . . . . 5 (𝑋0 ↔ ¬ 𝑋 = 0 )
2 oveq2 7240 . . . . . . . 8 ((𝑋 · 𝑌) = 0 → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = (((invr𝑅)‘𝑋) · 0 ))
32ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = (((invr𝑅)‘𝑋) · 0 ))
4 drngmuleq0.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ DivRing)
54adantr 484 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑅 ∈ DivRing)
6 drngmuleq0.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
76adantr 484 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑋𝐵)
8 simpr 488 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑋0 )
9 drngmuleq0.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
10 drngmuleq0.o . . . . . . . . . . . 12 0 = (0g𝑅)
11 drngmuleq0.t . . . . . . . . . . . 12 · = (.r𝑅)
12 eqid 2738 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
13 eqid 2738 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
149, 10, 11, 12, 13drnginvrl 19814 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
155, 7, 8, 14syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑋0 ) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
1615oveq1d 7247 . . . . . . . . 9 ((𝜑𝑋0 ) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = ((1r𝑅) · 𝑌))
17 drngring 19802 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
184, 17syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
1918adantr 484 . . . . . . . . . 10 ((𝜑𝑋0 ) → 𝑅 ∈ Ring)
209, 10, 13drnginvrcl 19812 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
215, 7, 8, 20syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
22 drngmuleq0.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2322adantr 484 . . . . . . . . . 10 ((𝜑𝑋0 ) → 𝑌𝐵)
249, 11ringass 19610 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)))
2519, 21, 7, 23, 24syl13anc 1374 . . . . . . . . 9 ((𝜑𝑋0 ) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)))
269, 11, 12ringlidm 19617 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
2718, 22, 26syl2anc 587 . . . . . . . . . 10 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
2827adantr 484 . . . . . . . . 9 ((𝜑𝑋0 ) → ((1r𝑅) · 𝑌) = 𝑌)
2916, 25, 283eqtr3d 2786 . . . . . . . 8 ((𝜑𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = 𝑌)
3029adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = 𝑌)
3118adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → 𝑅 ∈ Ring)
3231adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → 𝑅 ∈ Ring)
3321adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
349, 11, 10ringrz 19634 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑋) ∈ 𝐵) → (((invr𝑅)‘𝑋) · 0 ) = 0 )
3532, 33, 34syl2anc 587 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · 0 ) = 0 )
363, 30, 353eqtr3d 2786 . . . . . 6 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → 𝑌 = 0 )
3736ex 416 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (𝑋0𝑌 = 0 ))
381, 37syl5bir 246 . . . 4 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (¬ 𝑋 = 0𝑌 = 0 ))
3938orrd 863 . . 3 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (𝑋 = 0𝑌 = 0 ))
4039ex 416 . 2 (𝜑 → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
419, 11, 10ringlz 19633 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
4218, 22, 41syl2anc 587 . . . 4 (𝜑 → ( 0 · 𝑌) = 0 )
43 oveq1 7239 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
4443eqeq1d 2740 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
4542, 44syl5ibrcom 250 . . 3 (𝜑 → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
469, 11, 10ringrz 19634 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
4718, 6, 46syl2anc 587 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
48 oveq2 7240 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
4948eqeq1d 2740 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
5047, 49syl5ibrcom 250 . . 3 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
5145, 50jaod 859 . 2 (𝜑 → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
5240, 51impbid 215 1 (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2111  wne 2941  cfv 6398  (class class class)co 7232  Basecbs 16788  .rcmulr 16831  0gc0g 16972  1rcur 19544  Ringcrg 19590  invrcinvr 19717  DivRingcdr 19795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-tpos 7989  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-2 11918  df-3 11919  df-sets 16745  df-slot 16763  df-ndx 16773  df-base 16789  df-ress 16813  df-plusg 16843  df-mulr 16844  df-0g 16974  df-mgm 18142  df-sgrp 18191  df-mnd 18202  df-grp 18396  df-minusg 18397  df-mgp 19533  df-ur 19545  df-ring 19592  df-oppr 19669  df-dvdsr 19687  df-unit 19688  df-invr 19718  df-drng 19797
This theorem is referenced by:  drngmulne0  19817  drngmuleq0  19818
  Copyright terms: Public domain W3C validator