![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilsrnglem | Structured version Visualization version GIF version |
Description: Lemma for hlhilsrng 41296. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhillvec.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhillvec.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhillvec.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhildrng.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilsrng.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilsrng.s | ⊢ 𝑆 = (Scalar‘𝐿) |
hlhilsrng.b | ⊢ 𝐵 = (Base‘𝑆) |
hlhilsrng.p | ⊢ + = (+g‘𝑆) |
hlhilsrng.t | ⊢ · = (.r‘𝑆) |
hlhilsrng.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
hlhilsrnglem | ⊢ (𝜑 → 𝑅 ∈ *-Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillvec.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhilsrng.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
3 | hlhilsrng.s | . . 3 ⊢ 𝑆 = (Scalar‘𝐿) | |
4 | hlhillvec.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
5 | hlhildrng.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hlhillvec.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | hlhilsrng.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | hlhilsbase2 41284 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
9 | hlhilsrng.p | . . 3 ⊢ + = (+g‘𝑆) | |
10 | 1, 2, 3, 4, 5, 6, 9 | hlhilsplus2 41285 | . 2 ⊢ (𝜑 → + = (+g‘𝑅)) |
11 | hlhilsrng.t | . . 3 ⊢ · = (.r‘𝑆) | |
12 | 1, 2, 3, 4, 5, 6, 11 | hlhilsmul2 41286 | . 2 ⊢ (𝜑 → · = (.r‘𝑅)) |
13 | hlhilsrng.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
14 | 1, 4, 5, 13, 6 | hlhilnvl 41292 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝑅)) |
15 | 1, 4, 6, 5 | hlhildrng 41294 | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
16 | drngring 20590 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
18 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
19 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
20 | 1, 2, 3, 7, 13, 18, 19 | hgmapcl 41227 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) ∈ 𝐵) |
21 | 6 | 3ad2ant1 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | simp2 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
23 | simp3 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
24 | 1, 2, 3, 7, 9, 13, 21, 22, 23 | hgmapadd 41232 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐺‘(𝑥 + 𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
25 | 1, 2, 3, 7, 11, 13, 21, 22, 23 | hgmapmul 41233 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐺‘(𝑥 · 𝑦)) = ((𝐺‘𝑦) · (𝐺‘𝑥))) |
26 | 1, 2, 3, 7, 13, 18, 19 | hgmapvv 41264 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘(𝐺‘𝑥)) = 𝑥) |
27 | 8, 10, 12, 14, 17, 20, 24, 25, 26 | issrngd 20700 | 1 ⊢ (𝜑 → 𝑅 ∈ *-Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 Basecbs 17151 +gcplusg 17204 .rcmulr 17205 Scalarcsca 17207 Ringcrg 20134 DivRingcdr 20583 *-Ringcsr 20683 HLchlt 38687 LHypclh 39322 DVecHcdvh 40416 HGMapchg 41221 HLHilchlh 41270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-ghm 19135 df-cntz 19229 df-oppg 19258 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-drng 20585 df-staf 20684 df-srng 20685 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-lsatoms 38313 df-lshyp 38314 df-lcv 38356 df-lfl 38395 df-lkr 38423 df-ldual 38461 df-oposet 38513 df-ol 38515 df-oml 38516 df-covers 38603 df-ats 38604 df-atl 38635 df-cvlat 38659 df-hlat 38688 df-llines 38836 df-lplanes 38837 df-lvols 38838 df-lines 38839 df-psubsp 38841 df-pmap 38842 df-padd 39134 df-lhyp 39326 df-laut 39327 df-ldil 39442 df-ltrn 39443 df-trl 39497 df-tgrp 40081 df-tendo 40093 df-edring 40095 df-dveca 40341 df-disoa 40367 df-dvech 40417 df-dib 40477 df-dic 40511 df-dih 40567 df-doch 40686 df-djh 40733 df-lcdual 40925 df-mapd 40963 df-hvmap 41095 df-hdmap1 41131 df-hdmap 41132 df-hgmap 41222 df-hlhil 41271 |
This theorem is referenced by: hlhilsrng 41296 |
Copyright terms: Public domain | W3C validator |