Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilsrnglem | Structured version Visualization version GIF version |
Description: Lemma for hlhilsrng 39899. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhillvec.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhillvec.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhillvec.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhildrng.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilsrng.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilsrng.s | ⊢ 𝑆 = (Scalar‘𝐿) |
hlhilsrng.b | ⊢ 𝐵 = (Base‘𝑆) |
hlhilsrng.p | ⊢ + = (+g‘𝑆) |
hlhilsrng.t | ⊢ · = (.r‘𝑆) |
hlhilsrng.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
hlhilsrnglem | ⊢ (𝜑 → 𝑅 ∈ *-Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillvec.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhilsrng.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
3 | hlhilsrng.s | . . 3 ⊢ 𝑆 = (Scalar‘𝐿) | |
4 | hlhillvec.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
5 | hlhildrng.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hlhillvec.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | hlhilsrng.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | hlhilsbase2 39887 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
9 | hlhilsrng.p | . . 3 ⊢ + = (+g‘𝑆) | |
10 | 1, 2, 3, 4, 5, 6, 9 | hlhilsplus2 39888 | . 2 ⊢ (𝜑 → + = (+g‘𝑅)) |
11 | hlhilsrng.t | . . 3 ⊢ · = (.r‘𝑆) | |
12 | 1, 2, 3, 4, 5, 6, 11 | hlhilsmul2 39889 | . 2 ⊢ (𝜑 → · = (.r‘𝑅)) |
13 | hlhilsrng.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
14 | 1, 4, 5, 13, 6 | hlhilnvl 39895 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝑅)) |
15 | 1, 4, 6, 5 | hlhildrng 39897 | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
16 | drngring 19913 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
18 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
19 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
20 | 1, 2, 3, 7, 13, 18, 19 | hgmapcl 39830 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) ∈ 𝐵) |
21 | 6 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | simp2 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
23 | simp3 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
24 | 1, 2, 3, 7, 9, 13, 21, 22, 23 | hgmapadd 39835 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐺‘(𝑥 + 𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
25 | 1, 2, 3, 7, 11, 13, 21, 22, 23 | hgmapmul 39836 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐺‘(𝑥 · 𝑦)) = ((𝐺‘𝑦) · (𝐺‘𝑥))) |
26 | 1, 2, 3, 7, 13, 18, 19 | hgmapvv 39867 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘(𝐺‘𝑥)) = 𝑥) |
27 | 8, 10, 12, 14, 17, 20, 24, 25, 26 | issrngd 20036 | 1 ⊢ (𝜑 → 𝑅 ∈ *-Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 Ringcrg 19698 DivRingcdr 19906 *-Ringcsr 20019 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 HGMapchg 39824 HLHilchlh 39873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 df-hvmap 39698 df-hdmap1 39734 df-hdmap 39735 df-hgmap 39825 df-hlhil 39874 |
This theorem is referenced by: hlhilsrng 39899 |
Copyright terms: Public domain | W3C validator |