Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsrnglem Structured version   Visualization version   GIF version

Theorem hlhilsrnglem 41920
Description: Lemma for hlhilsrng 41921. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhillvec.h 𝐻 = (LHyp‘𝐾)
hlhillvec.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhillvec.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhildrng.r 𝑅 = (Scalar‘𝑈)
hlhilsrng.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilsrng.s 𝑆 = (Scalar‘𝐿)
hlhilsrng.b 𝐵 = (Base‘𝑆)
hlhilsrng.p + = (+g𝑆)
hlhilsrng.t · = (.r𝑆)
hlhilsrng.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
Assertion
Ref Expression
hlhilsrnglem (𝜑𝑅 ∈ *-Ring)

Proof of Theorem hlhilsrnglem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhillvec.h . . 3 𝐻 = (LHyp‘𝐾)
2 hlhilsrng.l . . 3 𝐿 = ((DVecH‘𝐾)‘𝑊)
3 hlhilsrng.s . . 3 𝑆 = (Scalar‘𝐿)
4 hlhillvec.u . . 3 𝑈 = ((HLHil‘𝐾)‘𝑊)
5 hlhildrng.r . . 3 𝑅 = (Scalar‘𝑈)
6 hlhillvec.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 hlhilsrng.b . . 3 𝐵 = (Base‘𝑆)
81, 2, 3, 4, 5, 6, 7hlhilsbase2 41909 . 2 (𝜑𝐵 = (Base‘𝑅))
9 hlhilsrng.p . . 3 + = (+g𝑆)
101, 2, 3, 4, 5, 6, 9hlhilsplus2 41910 . 2 (𝜑+ = (+g𝑅))
11 hlhilsrng.t . . 3 · = (.r𝑆)
121, 2, 3, 4, 5, 6, 11hlhilsmul2 41911 . 2 (𝜑· = (.r𝑅))
13 hlhilsrng.g . . 3 𝐺 = ((HGMap‘𝐾)‘𝑊)
141, 4, 5, 13, 6hlhilnvl 41917 . 2 (𝜑𝐺 = (*𝑟𝑅))
151, 4, 6, 5hlhildrng 41919 . . 3 (𝜑𝑅 ∈ DivRing)
16 drngring 20621 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
1715, 16syl 17 . 2 (𝜑𝑅 ∈ Ring)
186adantr 480 . . 3 ((𝜑𝑥𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpr 484 . . 3 ((𝜑𝑥𝐵) → 𝑥𝐵)
201, 2, 3, 7, 13, 18, 19hgmapcl 41856 . 2 ((𝜑𝑥𝐵) → (𝐺𝑥) ∈ 𝐵)
2163ad2ant1 1133 . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 simp2 1137 . . 3 ((𝜑𝑥𝐵𝑦𝐵) → 𝑥𝐵)
23 simp3 1138 . . 3 ((𝜑𝑥𝐵𝑦𝐵) → 𝑦𝐵)
241, 2, 3, 7, 9, 13, 21, 22, 23hgmapadd 41861 . 2 ((𝜑𝑥𝐵𝑦𝐵) → (𝐺‘(𝑥 + 𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
251, 2, 3, 7, 11, 13, 21, 22, 23hgmapmul 41862 . 2 ((𝜑𝑥𝐵𝑦𝐵) → (𝐺‘(𝑥 · 𝑦)) = ((𝐺𝑦) · (𝐺𝑥)))
261, 2, 3, 7, 13, 18, 19hgmapvv 41893 . 2 ((𝜑𝑥𝐵) → (𝐺‘(𝐺𝑥)) = 𝑥)
278, 10, 12, 14, 17, 20, 24, 25, 26issrngd 20740 1 (𝜑𝑅 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199  Ringcrg 20118  DivRingcdr 20614  *-Ringcsr 20723  HLchlt 39316  LHypclh 39951  DVecHcdvh 41045  HGMapchg 41850  HLHilchlh 41899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-ghm 19121  df-cntz 19225  df-oppg 19254  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-staf 20724  df-srng 20725  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lsatoms 38942  df-lshyp 38943  df-lcv 38985  df-lfl 39024  df-lkr 39052  df-ldual 39090  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tgrp 40710  df-tendo 40722  df-edring 40724  df-dveca 40970  df-disoa 40996  df-dvech 41046  df-dib 41106  df-dic 41140  df-dih 41196  df-doch 41315  df-djh 41362  df-lcdual 41554  df-mapd 41592  df-hvmap 41724  df-hdmap1 41760  df-hdmap 41761  df-hgmap 41851  df-hlhil 41900
This theorem is referenced by:  hlhilsrng  41921
  Copyright terms: Public domain W3C validator