Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgext0gsca Structured version   Visualization version   GIF version

Theorem drgext0gsca 33604
Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
Assertion
Ref Expression
drgext0gsca (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))

Proof of Theorem drgext0gsca
StepHypRef Expression
1 drgext.1 . . . 4 (𝜑𝐸 ∈ DivRing)
2 drngring 20651 . . . 4 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3 ringmnd 20161 . . . 4 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
41, 2, 33syl 18 . . 3 (𝜑𝐸 ∈ Mnd)
5 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
6 subrgsubg 20492 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
7 eqid 2731 . . . . 5 (0g𝐸) = (0g𝐸)
87subg0cl 19047 . . . 4 (𝑈 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑈)
95, 6, 83syl 18 . . 3 (𝜑 → (0g𝐸) ∈ 𝑈)
10 eqid 2731 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1110subrgss 20487 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
125, 11syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
13 eqid 2731 . . . 4 (𝐸s 𝑈) = (𝐸s 𝑈)
1413, 10, 7ress0g 18670 . . 3 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝑈𝑈 ⊆ (Base‘𝐸)) → (0g𝐸) = (0g‘(𝐸s 𝑈)))
154, 9, 12, 14syl3anc 1373 . 2 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝑈)))
16 drgext.b . . 3 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1716, 1, 5drgext0g 33602 . 2 (𝜑 → (0g𝐸) = (0g𝐵))
1816a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1918, 12srasca 21114 . . 3 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
2019fveq2d 6826 . 2 (𝜑 → (0g‘(𝐸s 𝑈)) = (0g‘(Scalar‘𝐵)))
2115, 17, 203eqtr3d 2774 1 (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  Scalarcsca 17164  0gc0g 17343  Mndcmnd 18642  SubGrpcsubg 19033  Ringcrg 20151  SubRingcsubrg 20484  DivRingcdr 20644  subringAlg csra 21105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-subg 19036  df-ring 20153  df-subrg 20485  df-drng 20646  df-sra 21107
This theorem is referenced by:  fedgmullem2  33643
  Copyright terms: Public domain W3C validator