| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drgext0gsca | Structured version Visualization version GIF version | ||
| Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| drgext.b | ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) |
| drgext.1 | ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| drgext.2 | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) |
| Ref | Expression |
|---|---|
| drgext0gsca | ⊢ (𝜑 → (0g‘𝐵) = (0g‘(Scalar‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drgext.1 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ DivRing) | |
| 2 | drngring 20621 | . . . 4 ⊢ (𝐸 ∈ DivRing → 𝐸 ∈ Ring) | |
| 3 | ringmnd 20128 | . . . 4 ⊢ (𝐸 ∈ Ring → 𝐸 ∈ Mnd) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 5 | drgext.2 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) | |
| 6 | subrgsubg 20462 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸)) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 8 | 7 | subg0cl 19042 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ 𝑈) |
| 9 | 5, 6, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (0g‘𝐸) ∈ 𝑈) |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 11 | 10 | subrgss 20457 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
| 12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐸)) |
| 13 | eqid 2729 | . . . 4 ⊢ (𝐸 ↾s 𝑈) = (𝐸 ↾s 𝑈) | |
| 14 | 13, 10, 7 | ress0g 18665 | . . 3 ⊢ ((𝐸 ∈ Mnd ∧ (0g‘𝐸) ∈ 𝑈 ∧ 𝑈 ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝑈))) |
| 15 | 4, 9, 12, 14 | syl3anc 1373 | . 2 ⊢ (𝜑 → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝑈))) |
| 16 | drgext.b | . . 3 ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) | |
| 17 | 16, 1, 5 | drgext0g 33558 | . 2 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐵)) |
| 18 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = ((subringAlg ‘𝐸)‘𝑈)) |
| 19 | 18, 12 | srasca 21063 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝑈) = (Scalar‘𝐵)) |
| 20 | 19 | fveq2d 6844 | . 2 ⊢ (𝜑 → (0g‘(𝐸 ↾s 𝑈)) = (0g‘(Scalar‘𝐵))) |
| 21 | 15, 17, 20 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (0g‘𝐵) = (0g‘(Scalar‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 Scalarcsca 17199 0gc0g 17378 Mndcmnd 18637 SubGrpcsubg 19028 Ringcrg 20118 SubRingcsubrg 20454 DivRingcdr 20614 subringAlg csra 21054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-subg 19031 df-ring 20120 df-subrg 20455 df-drng 20616 df-sra 21056 |
| This theorem is referenced by: fedgmullem2 33599 |
| Copyright terms: Public domain | W3C validator |