| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drgext0gsca | Structured version Visualization version GIF version | ||
| Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| drgext.b | ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) |
| drgext.1 | ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| drgext.2 | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) |
| Ref | Expression |
|---|---|
| drgext0gsca | ⊢ (𝜑 → (0g‘𝐵) = (0g‘(Scalar‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drgext.1 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ DivRing) | |
| 2 | drngring 20701 | . . . 4 ⊢ (𝐸 ∈ DivRing → 𝐸 ∈ Ring) | |
| 3 | ringmnd 20208 | . . . 4 ⊢ (𝐸 ∈ Ring → 𝐸 ∈ Mnd) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 5 | drgext.2 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) | |
| 6 | subrgsubg 20542 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸)) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 8 | 7 | subg0cl 19122 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ 𝑈) |
| 9 | 5, 6, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (0g‘𝐸) ∈ 𝑈) |
| 10 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 11 | 10 | subrgss 20537 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
| 12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐸)) |
| 13 | eqid 2736 | . . . 4 ⊢ (𝐸 ↾s 𝑈) = (𝐸 ↾s 𝑈) | |
| 14 | 13, 10, 7 | ress0g 18745 | . . 3 ⊢ ((𝐸 ∈ Mnd ∧ (0g‘𝐸) ∈ 𝑈 ∧ 𝑈 ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝑈))) |
| 15 | 4, 9, 12, 14 | syl3anc 1373 | . 2 ⊢ (𝜑 → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝑈))) |
| 16 | drgext.b | . . 3 ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) | |
| 17 | 16, 1, 5 | drgext0g 33634 | . 2 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐵)) |
| 18 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = ((subringAlg ‘𝐸)‘𝑈)) |
| 19 | 18, 12 | srasca 21143 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝑈) = (Scalar‘𝐵)) |
| 20 | 19 | fveq2d 6885 | . 2 ⊢ (𝜑 → (0g‘(𝐸 ↾s 𝑈)) = (0g‘(Scalar‘𝐵))) |
| 21 | 15, 17, 20 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (0g‘𝐵) = (0g‘(Scalar‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 Scalarcsca 17279 0gc0g 17458 Mndcmnd 18717 SubGrpcsubg 19108 Ringcrg 20198 SubRingcsubrg 20534 DivRingcdr 20694 subringAlg csra 21134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-sca 17292 df-vsca 17293 df-ip 17294 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-subg 19111 df-ring 20200 df-subrg 20535 df-drng 20696 df-sra 21136 |
| This theorem is referenced by: fedgmullem2 33675 |
| Copyright terms: Public domain | W3C validator |