Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgext0gsca Structured version   Visualization version   GIF version

Theorem drgext0gsca 31679
Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
Assertion
Ref Expression
drgext0gsca (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))

Proof of Theorem drgext0gsca
StepHypRef Expression
1 drgext.1 . . . 4 (𝜑𝐸 ∈ DivRing)
2 drngring 19998 . . . 4 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3 ringmnd 19793 . . . 4 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
41, 2, 33syl 18 . . 3 (𝜑𝐸 ∈ Mnd)
5 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
6 subrgsubg 20030 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
7 eqid 2738 . . . . 5 (0g𝐸) = (0g𝐸)
87subg0cl 18763 . . . 4 (𝑈 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑈)
95, 6, 83syl 18 . . 3 (𝜑 → (0g𝐸) ∈ 𝑈)
10 eqid 2738 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1110subrgss 20025 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
125, 11syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
13 eqid 2738 . . . 4 (𝐸s 𝑈) = (𝐸s 𝑈)
1413, 10, 7ress0g 18413 . . 3 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝑈𝑈 ⊆ (Base‘𝐸)) → (0g𝐸) = (0g‘(𝐸s 𝑈)))
154, 9, 12, 14syl3anc 1370 . 2 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝑈)))
16 drgext.b . . 3 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1716, 1, 5drgext0g 31677 . 2 (𝜑 → (0g𝐸) = (0g𝐵))
1816a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1918, 12srasca 20447 . . 3 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
2019fveq2d 6778 . 2 (𝜑 → (0g‘(𝐸s 𝑈)) = (0g‘(Scalar‘𝐵)))
2115, 17, 203eqtr3d 2786 1 (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Scalarcsca 16965  0gc0g 17150  Mndcmnd 18385  SubGrpcsubg 18749  Ringcrg 19783  DivRingcdr 19991  SubRingcsubrg 20020  subringAlg csra 20430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-subg 18752  df-ring 19785  df-drng 19993  df-subrg 20022  df-sra 20434
This theorem is referenced by:  fedgmullem2  31711
  Copyright terms: Public domain W3C validator