Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgext0gsca Structured version   Visualization version   GIF version

Theorem drgext0gsca 33558
Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
Assertion
Ref Expression
drgext0gsca (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))

Proof of Theorem drgext0gsca
StepHypRef Expression
1 drgext.1 . . . 4 (𝜑𝐸 ∈ DivRing)
2 drngring 20621 . . . 4 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3 ringmnd 20128 . . . 4 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
41, 2, 33syl 18 . . 3 (𝜑𝐸 ∈ Mnd)
5 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
6 subrgsubg 20462 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
7 eqid 2729 . . . . 5 (0g𝐸) = (0g𝐸)
87subg0cl 19013 . . . 4 (𝑈 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑈)
95, 6, 83syl 18 . . 3 (𝜑 → (0g𝐸) ∈ 𝑈)
10 eqid 2729 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1110subrgss 20457 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
125, 11syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
13 eqid 2729 . . . 4 (𝐸s 𝑈) = (𝐸s 𝑈)
1413, 10, 7ress0g 18636 . . 3 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝑈𝑈 ⊆ (Base‘𝐸)) → (0g𝐸) = (0g‘(𝐸s 𝑈)))
154, 9, 12, 14syl3anc 1373 . 2 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝑈)))
16 drgext.b . . 3 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1716, 1, 5drgext0g 33556 . 2 (𝜑 → (0g𝐸) = (0g𝐵))
1816a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1918, 12srasca 21084 . . 3 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
2019fveq2d 6826 . 2 (𝜑 → (0g‘(𝐸s 𝑈)) = (0g‘(Scalar‘𝐵)))
2115, 17, 203eqtr3d 2772 1 (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  Scalarcsca 17164  0gc0g 17343  Mndcmnd 18608  SubGrpcsubg 18999  Ringcrg 20118  SubRingcsubrg 20454  DivRingcdr 20614  subringAlg csra 21075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-subg 19002  df-ring 20120  df-subrg 20455  df-drng 20616  df-sra 21077
This theorem is referenced by:  fedgmullem2  33597
  Copyright terms: Public domain W3C validator