Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgext0gsca Structured version   Visualization version   GIF version

Theorem drgext0gsca 33594
Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
Assertion
Ref Expression
drgext0gsca (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))

Proof of Theorem drgext0gsca
StepHypRef Expression
1 drgext.1 . . . 4 (𝜑𝐸 ∈ DivRing)
2 drngring 20652 . . . 4 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3 ringmnd 20159 . . . 4 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
41, 2, 33syl 18 . . 3 (𝜑𝐸 ∈ Mnd)
5 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
6 subrgsubg 20493 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
7 eqid 2730 . . . . 5 (0g𝐸) = (0g𝐸)
87subg0cl 19073 . . . 4 (𝑈 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑈)
95, 6, 83syl 18 . . 3 (𝜑 → (0g𝐸) ∈ 𝑈)
10 eqid 2730 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1110subrgss 20488 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
125, 11syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
13 eqid 2730 . . . 4 (𝐸s 𝑈) = (𝐸s 𝑈)
1413, 10, 7ress0g 18696 . . 3 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝑈𝑈 ⊆ (Base‘𝐸)) → (0g𝐸) = (0g‘(𝐸s 𝑈)))
154, 9, 12, 14syl3anc 1373 . 2 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝑈)))
16 drgext.b . . 3 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1716, 1, 5drgext0g 33592 . 2 (𝜑 → (0g𝐸) = (0g𝐵))
1816a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1918, 12srasca 21094 . . 3 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
2019fveq2d 6865 . 2 (𝜑 → (0g‘(𝐸s 𝑈)) = (0g‘(Scalar‘𝐵)))
2115, 17, 203eqtr3d 2773 1 (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  Scalarcsca 17230  0gc0g 17409  Mndcmnd 18668  SubGrpcsubg 19059  Ringcrg 20149  SubRingcsubrg 20485  DivRingcdr 20645  subringAlg csra 21085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-subg 19062  df-ring 20151  df-subrg 20486  df-drng 20647  df-sra 21087
This theorem is referenced by:  fedgmullem2  33633
  Copyright terms: Public domain W3C validator