| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drgext0gsca | Structured version Visualization version GIF version | ||
| Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| drgext.b | ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) |
| drgext.1 | ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| drgext.2 | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) |
| Ref | Expression |
|---|---|
| drgext0gsca | ⊢ (𝜑 → (0g‘𝐵) = (0g‘(Scalar‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drgext.1 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ DivRing) | |
| 2 | drngring 20621 | . . . 4 ⊢ (𝐸 ∈ DivRing → 𝐸 ∈ Ring) | |
| 3 | ringmnd 20128 | . . . 4 ⊢ (𝐸 ∈ Ring → 𝐸 ∈ Mnd) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 5 | drgext.2 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) | |
| 6 | subrgsubg 20462 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸)) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 8 | 7 | subg0cl 19013 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐸) → (0g‘𝐸) ∈ 𝑈) |
| 9 | 5, 6, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (0g‘𝐸) ∈ 𝑈) |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 11 | 10 | subrgss 20457 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
| 12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐸)) |
| 13 | eqid 2729 | . . . 4 ⊢ (𝐸 ↾s 𝑈) = (𝐸 ↾s 𝑈) | |
| 14 | 13, 10, 7 | ress0g 18636 | . . 3 ⊢ ((𝐸 ∈ Mnd ∧ (0g‘𝐸) ∈ 𝑈 ∧ 𝑈 ⊆ (Base‘𝐸)) → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝑈))) |
| 15 | 4, 9, 12, 14 | syl3anc 1373 | . 2 ⊢ (𝜑 → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝑈))) |
| 16 | drgext.b | . . 3 ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) | |
| 17 | 16, 1, 5 | drgext0g 33556 | . 2 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐵)) |
| 18 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = ((subringAlg ‘𝐸)‘𝑈)) |
| 19 | 18, 12 | srasca 21084 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝑈) = (Scalar‘𝐵)) |
| 20 | 19 | fveq2d 6826 | . 2 ⊢ (𝜑 → (0g‘(𝐸 ↾s 𝑈)) = (0g‘(Scalar‘𝐵))) |
| 21 | 15, 17, 20 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (0g‘𝐵) = (0g‘(Scalar‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 0gc0g 17343 Mndcmnd 18608 SubGrpcsubg 18999 Ringcrg 20118 SubRingcsubrg 20454 DivRingcdr 20614 subringAlg csra 21075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-subg 19002 df-ring 20120 df-subrg 20455 df-drng 20616 df-sra 21077 |
| This theorem is referenced by: fedgmullem2 33597 |
| Copyright terms: Public domain | W3C validator |