Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgext0gsca Structured version   Visualization version   GIF version

Theorem drgext0gsca 33606
Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
Assertion
Ref Expression
drgext0gsca (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))

Proof of Theorem drgext0gsca
StepHypRef Expression
1 drgext.1 . . . 4 (𝜑𝐸 ∈ DivRing)
2 drngring 20758 . . . 4 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3 ringmnd 20270 . . . 4 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
41, 2, 33syl 18 . . 3 (𝜑𝐸 ∈ Mnd)
5 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
6 subrgsubg 20605 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
7 eqid 2740 . . . . 5 (0g𝐸) = (0g𝐸)
87subg0cl 19174 . . . 4 (𝑈 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑈)
95, 6, 83syl 18 . . 3 (𝜑 → (0g𝐸) ∈ 𝑈)
10 eqid 2740 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
1110subrgss 20600 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
125, 11syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
13 eqid 2740 . . . 4 (𝐸s 𝑈) = (𝐸s 𝑈)
1413, 10, 7ress0g 18800 . . 3 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝑈𝑈 ⊆ (Base‘𝐸)) → (0g𝐸) = (0g‘(𝐸s 𝑈)))
154, 9, 12, 14syl3anc 1371 . 2 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝑈)))
16 drgext.b . . 3 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1716, 1, 5drgext0g 33604 . 2 (𝜑 → (0g𝐸) = (0g𝐵))
1816a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1918, 12srasca 21206 . . 3 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
2019fveq2d 6924 . 2 (𝜑 → (0g‘(𝐸s 𝑈)) = (0g‘(Scalar‘𝐵)))
2115, 17, 203eqtr3d 2788 1 (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  Scalarcsca 17314  0gc0g 17499  Mndcmnd 18772  SubGrpcsubg 19160  Ringcrg 20260  SubRingcsubrg 20595  DivRingcdr 20751  subringAlg csra 21193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-subg 19163  df-ring 20262  df-subrg 20597  df-drng 20753  df-sra 21195
This theorem is referenced by:  fedgmullem2  33643
  Copyright terms: Public domain W3C validator