Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhnm Structured version   Visualization version   GIF version

Theorem qqhnm 31341
Description: The norm of the image by ℚHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
qqhnm.n 𝑁 = (norm‘𝑅)
qqhnm.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
qqhnm (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))

Proof of Theorem qqhnm
StepHypRef Expression
1 simpr 488 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ)
2 qeqnumdivden 16076 . . . 4 (𝑄 ∈ ℚ → 𝑄 = ((numer‘𝑄) / (denom‘𝑄)))
32fveq2d 6649 . . 3 (𝑄 ∈ ℚ → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
41, 3syl 17 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
5 qnumcl 16070 . . . . 5 (𝑄 ∈ ℚ → (numer‘𝑄) ∈ ℤ)
61, 5syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℤ)
76zcnd 12076 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℂ)
8 qdencl 16071 . . . . 5 (𝑄 ∈ ℚ → (denom‘𝑄) ∈ ℕ)
91, 8syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℕ)
109nncnd 11641 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℂ)
11 nnne0 11659 . . . 4 ((denom‘𝑄) ∈ ℕ → (denom‘𝑄) ≠ 0)
121, 8, 113syl 18 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ≠ 0)
137, 10, 12absdivd 14807 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘((numer‘𝑄) / (denom‘𝑄))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
14 inss2 4156 . . . . 5 (NrmRing ∩ DivRing) ⊆ DivRing
15 simpl1 1188 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
1614, 15sseldi 3913 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ DivRing)
17 simpl3 1190 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (chr‘𝑅) = 0)
18 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2798 . . . . . 6 (/r𝑅) = (/r𝑅)
20 eqid 2798 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2118, 19, 20qqhvval 31334 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = (((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄))))
2221fveq2d 6649 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
2316, 17, 1, 22syl21anc 836 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
24 inss1 4155 . . . . 5 (NrmRing ∩ DivRing) ⊆ NrmRing
2524, 15sseldi 3913 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NrmRing)
26 drngnzr 20028 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
2716, 26syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NzRing)
28 drngring 19502 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2920zrhrhm 20205 . . . . . 6 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
30 zringbas 20169 . . . . . . 7 ℤ = (Base‘ℤring)
3130, 18rhmf 19474 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3216, 28, 29, 314syl 19 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3332, 6ffvelrnd 6829 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅))
349nnzd 12074 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℤ)
35 eqid 2798 . . . . . 6 (0g𝑅) = (0g𝑅)
3618, 20, 35elzrhunit 31330 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑄) ∈ ℤ ∧ (denom‘𝑄) ≠ 0)) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
3716, 17, 34, 12, 36syl22anc 837 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
38 qqhnm.n . . . . 5 𝑁 = (norm‘𝑅)
39 eqid 2798 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4018, 38, 39, 19nmdvr 23276 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
4125, 27, 33, 37, 40syl22anc 837 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
42 simpl2 1189 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmMod)
43 qqhnm.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
4443zhmnrg 31318 . . . . . 6 (𝑅 ∈ NrmRing → 𝑍 ∈ NrmRing)
4525, 44syl 17 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmRing)
4618, 38, 43, 20zrhnm 31320 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (numer‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4742, 45, 27, 6, 46syl31anc 1370 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4818, 38, 43, 20zrhnm 31320 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (denom‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
4942, 45, 27, 34, 48syl31anc 1370 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
5047, 49oveq12d 7153 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
5123, 41, 503eqtrrd 2838 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))) = (𝑁‘((ℚHom‘𝑅)‘𝑄)))
524, 13, 513eqtrrd 2838 1 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cin 3880  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526   / cdiv 11286  cn 11625  cz 11969  cq 12336  abscabs 14585  numercnumer 16063  denomcdenom 16064  Basecbs 16475  0gc0g 16705  Ringcrg 19290  Unitcui 19385  /rcdvr 19428   RingHom crh 19460  DivRingcdr 19495  NzRingcnzr 20023  ringzring 20163  ℤRHomczrh 20193  ℤModczlm 20194  chrcchr 20195  normcnm 23183  NrmRingcnrg 23186  NrmModcnlm 23187  ℚHomcqqh 31323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-numer 16065  df-denom 16066  df-gz 16256  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-od 18648  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-abv 19581  df-lmod 19629  df-nzr 20024  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zlm 20198  df-chr 20199  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nrg 23192  df-nlm 23193  df-qqh 31324
This theorem is referenced by:  qqhcn  31342  qqhucn  31343
  Copyright terms: Public domain W3C validator