Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . 3
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
π β
β) |
2 | | qeqnumdivden 16686 |
. . . 4
β’ (π β β β π = ((numerβπ) / (denomβπ))) |
3 | 2 | fveq2d 6895 |
. . 3
β’ (π β β β
(absβπ) =
(absβ((numerβπ)
/ (denomβπ)))) |
4 | 1, 3 | syl 17 |
. 2
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(absβπ) =
(absβ((numerβπ)
/ (denomβπ)))) |
5 | | qnumcl 16680 |
. . . . 5
β’ (π β β β
(numerβπ) β
β€) |
6 | 1, 5 | syl 17 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(numerβπ) β
β€) |
7 | 6 | zcnd 12671 |
. . 3
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(numerβπ) β
β) |
8 | | qdencl 16681 |
. . . . 5
β’ (π β β β
(denomβπ) β
β) |
9 | 1, 8 | syl 17 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(denomβπ) β
β) |
10 | 9 | nncnd 12232 |
. . 3
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(denomβπ) β
β) |
11 | | nnne0 12250 |
. . . 4
β’
((denomβπ)
β β β (denomβπ) β 0) |
12 | 1, 8, 11 | 3syl 18 |
. . 3
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(denomβπ) β
0) |
13 | 7, 10, 12 | absdivd 15406 |
. 2
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(absβ((numerβπ)
/ (denomβπ))) =
((absβ(numerβπ)) / (absβ(denomβπ)))) |
14 | | inss2 4229 |
. . . . 5
β’ (NrmRing
β© DivRing) β DivRing |
15 | | simpl1 1191 |
. . . . 5
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
π
β (NrmRing β©
DivRing)) |
16 | 14, 15 | sselid 3980 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
π
β
DivRing) |
17 | | simpl3 1193 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(chrβπ
) =
0) |
18 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
19 | | eqid 2732 |
. . . . . 6
β’
(/rβπ
) = (/rβπ
) |
20 | | eqid 2732 |
. . . . . 6
β’
(β€RHomβπ
) = (β€RHomβπ
) |
21 | 18, 19, 20 | qqhvval 33249 |
. . . . 5
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
π β β) β
((βHomβπ
)βπ) = (((β€RHomβπ
)β(numerβπ))(/rβπ
)((β€RHomβπ
)β(denomβπ)))) |
22 | 21 | fveq2d 6895 |
. . . 4
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
π β β) β
(πβ((βHomβπ
)βπ)) = (πβ(((β€RHomβπ
)β(numerβπ))(/rβπ
)((β€RHomβπ
)β(denomβπ))))) |
23 | 16, 17, 1, 22 | syl21anc 836 |
. . 3
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(πβ((βHomβπ
)βπ)) = (πβ(((β€RHomβπ
)β(numerβπ))(/rβπ
)((β€RHomβπ
)β(denomβπ))))) |
24 | | inss1 4228 |
. . . . 5
β’ (NrmRing
β© DivRing) β NrmRing |
25 | 24, 15 | sselid 3980 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
π
β
NrmRing) |
26 | | drngnzr 20520 |
. . . . 5
β’ (π
β DivRing β π
β NzRing) |
27 | 16, 26 | syl 17 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
π
β
NzRing) |
28 | | drngring 20507 |
. . . . . 6
β’ (π
β DivRing β π
β Ring) |
29 | 20 | zrhrhm 21280 |
. . . . . 6
β’ (π
β Ring β
(β€RHomβπ
)
β (β€ring RingHom π
)) |
30 | | zringbas 21224 |
. . . . . . 7
β’ β€ =
(Baseββ€ring) |
31 | 30, 18 | rhmf 20376 |
. . . . . 6
β’
((β€RHomβπ
) β (β€ring RingHom
π
) β
(β€RHomβπ
):β€βΆ(Baseβπ
)) |
32 | 16, 28, 29, 31 | 4syl 19 |
. . . . 5
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(β€RHomβπ
):β€βΆ(Baseβπ
)) |
33 | 32, 6 | ffvelcdmd 7087 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
((β€RHomβπ
)β(numerβπ)) β (Baseβπ
)) |
34 | 9 | nnzd 12589 |
. . . . 5
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(denomβπ) β
β€) |
35 | | eqid 2732 |
. . . . . 6
β’
(0gβπ
) = (0gβπ
) |
36 | 18, 20, 35 | elzrhunit 33245 |
. . . . 5
β’ (((π
β DivRing β§
(chrβπ
) = 0) β§
((denomβπ) β
β€ β§ (denomβπ) β 0)) β ((β€RHomβπ
)β(denomβπ)) β (Unitβπ
)) |
37 | 16, 17, 34, 12, 36 | syl22anc 837 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
((β€RHomβπ
)β(denomβπ)) β (Unitβπ
)) |
38 | | qqhnm.n |
. . . . 5
β’ π = (normβπ
) |
39 | | eqid 2732 |
. . . . 5
β’
(Unitβπ
) =
(Unitβπ
) |
40 | 18, 38, 39, 19 | nmdvr 24407 |
. . . 4
β’ (((π
β NrmRing β§ π
β NzRing) β§
(((β€RHomβπ
)β(numerβπ)) β (Baseβπ
) β§ ((β€RHomβπ
)β(denomβπ)) β (Unitβπ
))) β (πβ(((β€RHomβπ
)β(numerβπ))(/rβπ
)((β€RHomβπ
)β(denomβπ)))) = ((πβ((β€RHomβπ
)β(numerβπ))) / (πβ((β€RHomβπ
)β(denomβπ))))) |
41 | 25, 27, 33, 37, 40 | syl22anc 837 |
. . 3
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(πβ(((β€RHomβπ
)β(numerβπ))(/rβπ
)((β€RHomβπ
)β(denomβπ)))) = ((πβ((β€RHomβπ
)β(numerβπ))) / (πβ((β€RHomβπ
)β(denomβπ))))) |
42 | | simpl2 1192 |
. . . . 5
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
π β
NrmMod) |
43 | | qqhnm.z |
. . . . . . 7
β’ π = (β€Modβπ
) |
44 | 43 | zhmnrg 33233 |
. . . . . 6
β’ (π
β NrmRing β π β
NrmRing) |
45 | 25, 44 | syl 17 |
. . . . 5
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
π β
NrmRing) |
46 | 18, 38, 43, 20 | zrhnm 33235 |
. . . . 5
β’ (((π β NrmMod β§ π β NrmRing β§ π
β NzRing) β§
(numerβπ) β
β€) β (πβ((β€RHomβπ
)β(numerβπ))) = (absβ(numerβπ))) |
47 | 42, 45, 27, 6, 46 | syl31anc 1373 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(πβ((β€RHomβπ
)β(numerβπ))) = (absβ(numerβπ))) |
48 | 18, 38, 43, 20 | zrhnm 33235 |
. . . . 5
β’ (((π β NrmMod β§ π β NrmRing β§ π
β NzRing) β§
(denomβπ) β
β€) β (πβ((β€RHomβπ
)β(denomβπ))) = (absβ(denomβπ))) |
49 | 42, 45, 27, 34, 48 | syl31anc 1373 |
. . . 4
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(πβ((β€RHomβπ
)β(denomβπ))) = (absβ(denomβπ))) |
50 | 47, 49 | oveq12d 7429 |
. . 3
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
((πβ((β€RHomβπ
)β(numerβπ))) / (πβ((β€RHomβπ
)β(denomβπ)))) = ((absβ(numerβπ)) /
(absβ(denomβπ)))) |
51 | 23, 41, 50 | 3eqtrrd 2777 |
. 2
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
((absβ(numerβπ)) / (absβ(denomβπ))) = (πβ((βHomβπ
)βπ))) |
52 | 4, 13, 51 | 3eqtrrd 2777 |
1
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
π β β) β
(πβ((βHomβπ
)βπ)) = (absβπ)) |