Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhnm Structured version   Visualization version   GIF version

Theorem qqhnm 33975
Description: The norm of the image by ℚHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
qqhnm.n 𝑁 = (norm‘𝑅)
qqhnm.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
qqhnm (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))

Proof of Theorem qqhnm
StepHypRef Expression
1 simpr 484 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ)
2 qeqnumdivden 16694 . . . 4 (𝑄 ∈ ℚ → 𝑄 = ((numer‘𝑄) / (denom‘𝑄)))
32fveq2d 6845 . . 3 (𝑄 ∈ ℚ → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
41, 3syl 17 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
5 qnumcl 16688 . . . . 5 (𝑄 ∈ ℚ → (numer‘𝑄) ∈ ℤ)
61, 5syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℤ)
76zcnd 12618 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℂ)
8 qdencl 16689 . . . . 5 (𝑄 ∈ ℚ → (denom‘𝑄) ∈ ℕ)
91, 8syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℕ)
109nncnd 12181 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℂ)
11 nnne0 12199 . . . 4 ((denom‘𝑄) ∈ ℕ → (denom‘𝑄) ≠ 0)
121, 8, 113syl 18 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ≠ 0)
137, 10, 12absdivd 15402 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘((numer‘𝑄) / (denom‘𝑄))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
14 inss2 4197 . . . . 5 (NrmRing ∩ DivRing) ⊆ DivRing
15 simpl1 1192 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
1614, 15sselid 3941 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ DivRing)
17 simpl3 1194 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (chr‘𝑅) = 0)
18 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2729 . . . . . 6 (/r𝑅) = (/r𝑅)
20 eqid 2729 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2118, 19, 20qqhvval 33968 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = (((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄))))
2221fveq2d 6845 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
2316, 17, 1, 22syl21anc 837 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
24 inss1 4196 . . . . 5 (NrmRing ∩ DivRing) ⊆ NrmRing
2524, 15sselid 3941 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NrmRing)
26 drngnzr 20670 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
2716, 26syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NzRing)
28 drngring 20658 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2920zrhrhm 21455 . . . . . 6 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
30 zringbas 21397 . . . . . . 7 ℤ = (Base‘ℤring)
3130, 18rhmf 20407 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3216, 28, 29, 314syl 19 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3332, 6ffvelcdmd 7040 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅))
349nnzd 12535 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℤ)
35 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
3618, 20, 35elzrhunit 33962 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑄) ∈ ℤ ∧ (denom‘𝑄) ≠ 0)) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
3716, 17, 34, 12, 36syl22anc 838 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
38 qqhnm.n . . . . 5 𝑁 = (norm‘𝑅)
39 eqid 2729 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4018, 38, 39, 19nmdvr 24593 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
4125, 27, 33, 37, 40syl22anc 838 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
42 simpl2 1193 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmMod)
43 qqhnm.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
4443zhmnrg 33950 . . . . . 6 (𝑅 ∈ NrmRing → 𝑍 ∈ NrmRing)
4525, 44syl 17 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmRing)
4618, 38, 43, 20zrhnm 33952 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (numer‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4742, 45, 27, 6, 46syl31anc 1375 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4818, 38, 43, 20zrhnm 33952 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (denom‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
4942, 45, 27, 34, 48syl31anc 1375 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
5047, 49oveq12d 7388 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
5123, 41, 503eqtrrd 2769 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))) = (𝑁‘((ℚHom‘𝑅)‘𝑄)))
524, 13, 513eqtrrd 2769 1 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cin 3910  wf 6496  cfv 6500  (class class class)co 7370  0cc0 11047   / cdiv 11814  cn 12165  cz 12508  cq 12886  abscabs 15178  numercnumer 16681  denomcdenom 16682  Basecbs 17157  0gc0g 17380  Ringcrg 20155  Unitcui 20277  /rcdvr 20322   RingHom crh 20391  NzRingcnzr 20434  DivRingcdr 20651  ringczring 21390  ℤRHomczrh 21443  ℤModczlm 21444  chrcchr 21445  normcnm 24499  NrmRingcnrg 24502  NrmModcnlm 24503  ℚHomcqqh 33955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-tpos 8183  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-er 8649  df-map 8779  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-sup 9370  df-inf 9371  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-q 12887  df-rp 12931  df-xneg 13051  df-xadd 13052  df-xmul 13053  df-ico 13291  df-fz 13448  df-fzo 13595  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16201  df-gcd 16443  df-numer 16683  df-denom 16684  df-gz 16879  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-rest 17363  df-topn 17364  df-0g 17382  df-topgen 17384  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-mhm 18694  df-grp 18852  df-minusg 18853  df-sbg 18854  df-mulg 18984  df-subg 19039  df-ghm 19129  df-od 19444  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-rhm 20394  df-nzr 20435  df-subrng 20468  df-subrg 20492  df-drng 20653  df-abv 20731  df-lmod 20802  df-psmet 21290  df-xmet 21291  df-met 21292  df-bl 21293  df-mopn 21294  df-cnfld 21299  df-zring 21391  df-zrh 21447  df-zlm 21448  df-chr 21449  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22868  df-xms 24243  df-ms 24244  df-nm 24505  df-ngp 24506  df-nrg 24508  df-nlm 24509  df-qqh 33956
This theorem is referenced by:  qqhcn  33976  qqhucn  33977
  Copyright terms: Public domain W3C validator