Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhnm Structured version   Visualization version   GIF version

Theorem qqhnm 31226
 Description: The norm of the image by ℚHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
qqhnm.n 𝑁 = (norm‘𝑅)
qqhnm.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
qqhnm (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))

Proof of Theorem qqhnm
StepHypRef Expression
1 simpr 487 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ)
2 qeqnumdivden 16080 . . . 4 (𝑄 ∈ ℚ → 𝑄 = ((numer‘𝑄) / (denom‘𝑄)))
32fveq2d 6668 . . 3 (𝑄 ∈ ℚ → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
41, 3syl 17 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
5 qnumcl 16074 . . . . 5 (𝑄 ∈ ℚ → (numer‘𝑄) ∈ ℤ)
61, 5syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℤ)
76zcnd 12082 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℂ)
8 qdencl 16075 . . . . 5 (𝑄 ∈ ℚ → (denom‘𝑄) ∈ ℕ)
91, 8syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℕ)
109nncnd 11648 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℂ)
11 nnne0 11665 . . . 4 ((denom‘𝑄) ∈ ℕ → (denom‘𝑄) ≠ 0)
121, 8, 113syl 18 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ≠ 0)
137, 10, 12absdivd 14809 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘((numer‘𝑄) / (denom‘𝑄))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
14 inss2 4205 . . . . 5 (NrmRing ∩ DivRing) ⊆ DivRing
15 simpl1 1187 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
1614, 15sseldi 3964 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ DivRing)
17 simpl3 1189 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (chr‘𝑅) = 0)
18 eqid 2821 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2821 . . . . . 6 (/r𝑅) = (/r𝑅)
20 eqid 2821 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2118, 19, 20qqhvval 31219 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = (((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄))))
2221fveq2d 6668 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
2316, 17, 1, 22syl21anc 835 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
24 inss1 4204 . . . . 5 (NrmRing ∩ DivRing) ⊆ NrmRing
2524, 15sseldi 3964 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NrmRing)
26 drngnzr 20029 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
2716, 26syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NzRing)
28 drngring 19503 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2920zrhrhm 20653 . . . . . 6 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
30 zringbas 20617 . . . . . . 7 ℤ = (Base‘ℤring)
3130, 18rhmf 19472 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3216, 28, 29, 314syl 19 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3332, 6ffvelrnd 6846 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅))
349nnzd 12080 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℤ)
35 eqid 2821 . . . . . 6 (0g𝑅) = (0g𝑅)
3618, 20, 35elzrhunit 31215 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑄) ∈ ℤ ∧ (denom‘𝑄) ≠ 0)) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
3716, 17, 34, 12, 36syl22anc 836 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
38 qqhnm.n . . . . 5 𝑁 = (norm‘𝑅)
39 eqid 2821 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4018, 38, 39, 19nmdvr 23273 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
4125, 27, 33, 37, 40syl22anc 836 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
42 simpl2 1188 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmMod)
43 qqhnm.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
4443zhmnrg 31203 . . . . . 6 (𝑅 ∈ NrmRing → 𝑍 ∈ NrmRing)
4525, 44syl 17 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmRing)
4618, 38, 43, 20zrhnm 31205 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (numer‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4742, 45, 27, 6, 46syl31anc 1369 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4818, 38, 43, 20zrhnm 31205 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (denom‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
4942, 45, 27, 34, 48syl31anc 1369 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
5047, 49oveq12d 7168 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
5123, 41, 503eqtrrd 2861 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))) = (𝑁‘((ℚHom‘𝑅)‘𝑄)))
524, 13, 513eqtrrd 2861 1 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110   ≠ wne 3016   ∩ cin 3934  ⟶wf 6345  ‘cfv 6349  (class class class)co 7150  0cc0 10531   / cdiv 11291  ℕcn 11632  ℤcz 11975  ℚcq 12342  abscabs 14587  numercnumer 16067  denomcdenom 16068  Basecbs 16477  0gc0g 16707  Ringcrg 19291  Unitcui 19383  /rcdvr 19426   RingHom crh 19458  DivRingcdr 19496  NzRingcnzr 20024  ℤringzring 20611  ℤRHomczrh 20641  ℤModczlm 20642  chrcchr 20643  normcnm 23180  NrmRingcnrg 23183  NrmModcnlm 23184  ℚHomcqqh 31208 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-numer 16069  df-denom 16070  df-gz 16260  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-0g 16709  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-od 18650  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-subrg 19527  df-abv 19582  df-lmod 19630  df-nzr 20025  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-zlm 20646  df-chr 20647  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-xms 22924  df-ms 22925  df-nm 23186  df-ngp 23187  df-nrg 23189  df-nlm 23190  df-qqh 31209 This theorem is referenced by:  qqhcn  31227  qqhucn  31228
 Copyright terms: Public domain W3C validator