Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngcat | Structured version Visualization version GIF version |
Description: The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.) |
Ref | Expression |
---|---|
drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
drngcat | ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 19804 | . . 3 ⊢ (𝑟 ∈ DivRing → 𝑟 ∈ Ring) | |
2 | 1 | rgen 3073 | . 2 ⊢ ∀𝑟 ∈ DivRing 𝑟 ∈ Ring |
3 | drhmsubc.c | . 2 ⊢ 𝐶 = (𝑈 ∩ DivRing) | |
4 | drhmsubc.j | . 2 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
5 | 2, 3, 4 | sringcat 45341 | 1 ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ∩ cin 3881 ‘cfv 6400 (class class class)co 7234 ∈ cmpo 7236 Catccat 17197 ↾cat cresc 17343 Ringcrg 19592 RingHom crh 19762 DivRingcdr 19797 RingCatcringc 45267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-pm 8534 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-2 11920 df-3 11921 df-4 11922 df-5 11923 df-6 11924 df-7 11925 df-8 11926 df-9 11927 df-n0 12118 df-z 12204 df-dec 12321 df-uz 12466 df-fz 13123 df-struct 16730 df-sets 16747 df-slot 16765 df-ndx 16775 df-base 16791 df-ress 16815 df-plusg 16845 df-hom 16856 df-cco 16857 df-0g 16976 df-cat 17201 df-cid 17202 df-homf 17203 df-ssc 17345 df-resc 17346 df-subc 17347 df-estrc 17660 df-mgm 18144 df-sgrp 18193 df-mnd 18204 df-mhm 18248 df-grp 18398 df-ghm 18650 df-mgp 19535 df-ur 19547 df-ring 19594 df-rnghom 19765 df-drng 19799 df-ringc 45269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |