MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsexp Structured version   Visualization version   GIF version

Theorem dvdsexp 16137
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
dvdsexp ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ (𝐴𝑁))

Proof of Theorem dvdsexp
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℤ)
2 uznn0sub 12723 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
323ad2ant3 1135 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
4 zexpcl 13903 . . . 4 ((𝐴 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (𝐴↑(𝑁𝑀)) ∈ ℤ)
51, 3, 4syl2anc 585 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) ∈ ℤ)
6 zexpcl 13903 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℤ)
763adant3 1132 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℤ)
8 dvdsmul2 16088 . . 3 (((𝐴↑(𝑁𝑀)) ∈ ℤ ∧ (𝐴𝑀) ∈ ℤ) → (𝐴𝑀) ∥ ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
95, 7, 8syl2anc 585 . 2 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
101zcnd 12533 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
11 simp2 1137 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℕ0)
1210, 11, 3expaddd 13972 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑((𝑁𝑀) + 𝑀)) = ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
13 eluzelcn 12700 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
14133ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
1511nn0cnd 12401 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
1614, 15npcand 11442 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝑁𝑀) + 𝑀) = 𝑁)
1716oveq2d 7358 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑((𝑁𝑀) + 𝑀)) = (𝐴𝑁))
1812, 17eqtr3d 2779 . 2 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)) = (𝐴𝑁))
199, 18breqtrd 5123 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2106   class class class wbr 5097  cfv 6484  (class class class)co 7342  cc 10975   + caddc 10980   · cmul 10982  cmin 11311  0cn0 12339  cz 12425  cuz 12688  cexp 13888  cdvds 16063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-n0 12340  df-z 12426  df-uz 12689  df-seq 13828  df-exp 13889  df-dvds 16064
This theorem is referenced by:  bitsmod  16243  pcpremul  16642  pcdvdsb  16668  lt6abl  19591  ablfac1eu  19771  dvdsppwf1o  26441  jm2.20nn  41131  odz2prm2pw  45431
  Copyright terms: Public domain W3C validator