![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsexp | Structured version Visualization version GIF version |
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
dvdsexp | ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℤ) | |
2 | uznn0sub 12942 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
3 | 2 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
4 | zexpcl 14127 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝐴↑(𝑁 − 𝑀)) ∈ ℤ) | |
5 | 1, 3, 4 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) ∈ ℤ) |
6 | zexpcl 14127 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴↑𝑀) ∈ ℤ) | |
7 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℤ) |
8 | dvdsmul2 16327 | . . 3 ⊢ (((𝐴↑(𝑁 − 𝑀)) ∈ ℤ ∧ (𝐴↑𝑀) ∈ ℤ) → (𝐴↑𝑀) ∥ ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) | |
9 | 5, 7, 8 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) |
10 | 1 | zcnd 12748 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
11 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) | |
12 | 10, 11, 3 | expaddd 14198 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑁 − 𝑀) + 𝑀)) = ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) |
13 | eluzelcn 12915 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | |
14 | 13 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℂ) |
15 | 11 | nn0cnd 12615 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℂ) |
16 | 14, 15 | npcand 11651 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
17 | 16 | oveq2d 7464 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑁 − 𝑀) + 𝑀)) = (𝐴↑𝑁)) |
18 | 12, 17 | eqtr3d 2782 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀)) = (𝐴↑𝑁)) |
19 | 9, 18 | breqtrd 5192 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 + caddc 11187 · cmul 11189 − cmin 11520 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 ↑cexp 14112 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 df-dvds 16303 |
This theorem is referenced by: bitsmod 16482 pcpremul 16890 pcdvdsb 16916 lt6abl 19937 ablfac1eu 20117 dvdsppwf1o 27247 jm2.20nn 42954 odz2prm2pw 47437 |
Copyright terms: Public domain | W3C validator |