Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsexp | Structured version Visualization version GIF version |
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
dvdsexp | ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℤ) | |
2 | uznn0sub 12723 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
3 | 2 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
4 | zexpcl 13903 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝐴↑(𝑁 − 𝑀)) ∈ ℤ) | |
5 | 1, 3, 4 | syl2anc 585 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) ∈ ℤ) |
6 | zexpcl 13903 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴↑𝑀) ∈ ℤ) | |
7 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℤ) |
8 | dvdsmul2 16088 | . . 3 ⊢ (((𝐴↑(𝑁 − 𝑀)) ∈ ℤ ∧ (𝐴↑𝑀) ∈ ℤ) → (𝐴↑𝑀) ∥ ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) | |
9 | 5, 7, 8 | syl2anc 585 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) |
10 | 1 | zcnd 12533 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
11 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) | |
12 | 10, 11, 3 | expaddd 13972 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑁 − 𝑀) + 𝑀)) = ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) |
13 | eluzelcn 12700 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | |
14 | 13 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℂ) |
15 | 11 | nn0cnd 12401 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℂ) |
16 | 14, 15 | npcand 11442 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
17 | 16 | oveq2d 7358 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑁 − 𝑀) + 𝑀)) = (𝐴↑𝑁)) |
18 | 12, 17 | eqtr3d 2779 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀)) = (𝐴↑𝑁)) |
19 | 9, 18 | breqtrd 5123 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 ℂcc 10975 + caddc 10980 · cmul 10982 − cmin 11311 ℕ0cn0 12339 ℤcz 12425 ℤ≥cuz 12688 ↑cexp 13888 ∥ cdvds 16063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 df-seq 13828 df-exp 13889 df-dvds 16064 |
This theorem is referenced by: bitsmod 16243 pcpremul 16642 pcdvdsb 16668 lt6abl 19591 ablfac1eu 19771 dvdsppwf1o 26441 jm2.20nn 41131 odz2prm2pw 45431 |
Copyright terms: Public domain | W3C validator |