![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsexp | Structured version Visualization version GIF version |
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
dvdsexp | ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1116 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℤ) | |
2 | uznn0sub 12094 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
3 | 2 | 3ad2ant3 1115 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
4 | zexpcl 13262 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝑁 − 𝑀) ∈ ℕ0) → (𝐴↑(𝑁 − 𝑀)) ∈ ℤ) | |
5 | 1, 3, 4 | syl2anc 576 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) ∈ ℤ) |
6 | zexpcl 13262 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴↑𝑀) ∈ ℤ) | |
7 | 6 | 3adant3 1112 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℤ) |
8 | dvdsmul2 15495 | . . 3 ⊢ (((𝐴↑(𝑁 − 𝑀)) ∈ ℤ ∧ (𝐴↑𝑀) ∈ ℤ) → (𝐴↑𝑀) ∥ ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) | |
9 | 5, 7, 8 | syl2anc 576 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) |
10 | 1 | zcnd 11904 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
11 | simp2 1117 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℕ0) | |
12 | 10, 11, 3 | expaddd 13330 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑁 − 𝑀) + 𝑀)) = ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀))) |
13 | eluzelcn 12073 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | |
14 | 13 | 3ad2ant3 1115 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℂ) |
15 | 11 | nn0cnd 11772 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℂ) |
16 | 14, 15 | npcand 10804 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
17 | 16 | oveq2d 6994 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑁 − 𝑀) + 𝑀)) = (𝐴↑𝑁)) |
18 | 12, 17 | eqtr3d 2816 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝐴↑(𝑁 − 𝑀)) · (𝐴↑𝑀)) = (𝐴↑𝑁)) |
19 | 9, 18 | breqtrd 4956 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 ∈ wcel 2050 class class class wbr 4930 ‘cfv 6190 (class class class)co 6978 ℂcc 10335 + caddc 10340 · cmul 10342 − cmin 10672 ℕ0cn0 11710 ℤcz 11796 ℤ≥cuz 12061 ↑cexp 13247 ∥ cdvds 15470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-n0 11711 df-z 11797 df-uz 12062 df-seq 13188 df-exp 13248 df-dvds 15471 |
This theorem is referenced by: bitsmod 15648 pcpremul 16039 pcdvdsb 16064 lt6abl 18772 ablfac1eu 18948 dvdsppwf1o 25468 jm2.20nn 38990 odz2prm2pw 43094 |
Copyright terms: Public domain | W3C validator |