Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ldlem Structured version   Visualization version   GIF version

Theorem dignn0ldlem 44143
Description: Lemma for dignnld 44144. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignn0ldlem ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))

Proof of Theorem dignn0ldlem
StepHypRef Expression
1 nnre 11493 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
213ad2ant2 1127 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
3 eluzelre 12104 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
433ad2ant1 1126 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
5 eluz2nn 12133 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
6 nnnn0 11752 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
76nn0ge0d 11806 . . . . . 6 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
85, 7syl 17 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
983ad2ant1 1126 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝐵)
10 nnrp 12250 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
11 relogbzcl 25033 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
1210, 11sylan2 592 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
13123adant3 1125 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) ∈ ℝ)
144, 9, 13recxpcld 24987 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) ∈ ℝ)
15 eluzelre 12104 . . . . 5 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℝ)
16153ad2ant3 1128 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℝ)
174, 9, 16recxpcld 24987 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐𝐾) ∈ ℝ)
181leidd 11054 . . . . . 6 (𝑁 ∈ ℕ → 𝑁𝑁)
1918adantl 482 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁𝑁)
20 eluz2cnn0n1 44047 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ (ℂ ∖ {0, 1}))
21 nncn 11494 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 nnne0 11519 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
23 eldifsn 4626 . . . . . . 7 (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
2421, 22, 23sylanbrc 583 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0}))
25 cxplogb 25045 . . . . . 6 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2620, 24, 25syl2an 595 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2719, 26breqtrrd 4990 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
28273adant3 1125 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
29 eluz2 12099 . . . . . 6 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) ↔ (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾))
3012adantl 482 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) ∈ ℝ)
31 flltp1 13020 . . . . . . . . . . . 12 ((𝐵 logb 𝑁) ∈ ℝ → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
3230, 31syl 17 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
33 zre 11833 . . . . . . . . . . . . . 14 (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3433adantr 481 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3534adantr 481 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
36 zre 11833 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3736adantl 482 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
3837adantr 481 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈ ℝ)
39 ltletr 10579 . . . . . . . . . . . 12 (((𝐵 logb 𝑁) ∈ ℝ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4030, 35, 38, 39syl3anc 1364 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4132, 40mpand 691 . . . . . . . . . 10 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾))
4241ex 413 . . . . . . . . 9 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾)))
4342com23 86 . . . . . . . 8 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾)))
44433impia 1110 . . . . . . 7 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾))
4544com12 32 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4629, 45syl5bi 243 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → (𝐵 logb 𝑁) < 𝐾))
47463impia 1110 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) < 𝐾)
48 eluz2gt1 12169 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
493, 48jca 512 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
50493ad2ant1 1126 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
51 cxplt 24958 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ ((𝐵 logb 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5250, 13, 16, 51syl12anc 833 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5347, 52mpbid 233 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾))
542, 14, 17, 28, 53lelttrd 10645 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝑐𝐾))
55 eluzelcn 12105 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
56553ad2ant1 1126 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
57 eluz2n0 12137 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
58573ad2ant1 1126 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
59 eluzelz 12103 . . . 4 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
60593ad2ant3 1128 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
61 cxpexpz 24931 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵𝑐𝐾) = (𝐵𝐾))
6261breq2d 4974 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6356, 58, 60, 62syl3anc 1364 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6454, 63mpbid 233 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  cdif 3856  {csn 4472  {cpr 4474   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   < clt 10521  cle 10522  cn 11486  2c2 11540  cz 11829  cuz 12093  +crp 12239  cfl 13010  cexp 13279  𝑐ccxp 24820   logb clogb 25023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-cxp 24822  df-logb 25024
This theorem is referenced by:  dignnld  44144
  Copyright terms: Public domain W3C validator