Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ldlem Structured version   Visualization version   GIF version

Theorem dignn0ldlem 48591
Description: Lemma for dignnld 48592. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignn0ldlem ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))

Proof of Theorem dignn0ldlem
StepHypRef Expression
1 nnre 12193 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
213ad2ant2 1134 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
3 eluzelre 12804 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
433ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
5 eluz2nn 12847 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
6 nnnn0 12449 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
76nn0ge0d 12506 . . . . . 6 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
85, 7syl 17 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
983ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝐵)
10 nnrp 12963 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
11 relogbzcl 26684 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
1210, 11sylan2 593 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
13123adant3 1132 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) ∈ ℝ)
144, 9, 13recxpcld 26632 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) ∈ ℝ)
15 eluzelre 12804 . . . . 5 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℝ)
16153ad2ant3 1135 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℝ)
174, 9, 16recxpcld 26632 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐𝐾) ∈ ℝ)
181leidd 11744 . . . . . 6 (𝑁 ∈ ℕ → 𝑁𝑁)
1918adantl 481 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁𝑁)
20 eluz2cnn0n1 48500 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ (ℂ ∖ {0, 1}))
21 nncn 12194 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 nnne0 12220 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
23 eldifsn 4750 . . . . . . 7 (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
2421, 22, 23sylanbrc 583 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0}))
25 cxplogb 26696 . . . . . 6 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2620, 24, 25syl2an 596 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2719, 26breqtrrd 5135 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
28273adant3 1132 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
29 eluz2 12799 . . . . . 6 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) ↔ (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾))
3012adantl 481 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) ∈ ℝ)
31 flltp1 13762 . . . . . . . . . . . 12 ((𝐵 logb 𝑁) ∈ ℝ → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
3230, 31syl 17 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
33 zre 12533 . . . . . . . . . . . . . 14 (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3433adantr 480 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3534adantr 480 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
36 zre 12533 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
3837adantr 480 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈ ℝ)
39 ltletr 11266 . . . . . . . . . . . 12 (((𝐵 logb 𝑁) ∈ ℝ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4030, 35, 38, 39syl3anc 1373 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4132, 40mpand 695 . . . . . . . . . 10 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾))
4241ex 412 . . . . . . . . 9 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾)))
4342com23 86 . . . . . . . 8 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾)))
44433impia 1117 . . . . . . 7 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾))
4544com12 32 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4629, 45biimtrid 242 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → (𝐵 logb 𝑁) < 𝐾))
47463impia 1117 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) < 𝐾)
48 eluz2gt1 12879 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
493, 48jca 511 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
50493ad2ant1 1133 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
51 cxplt 26603 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ ((𝐵 logb 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5250, 13, 16, 51syl12anc 836 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5347, 52mpbid 232 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾))
542, 14, 17, 28, 53lelttrd 11332 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝑐𝐾))
55 eluzelcn 12805 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
56553ad2ant1 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
57 eluz2n0 12852 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
58573ad2ant1 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
59 eluzelz 12803 . . . 4 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
60593ad2ant3 1135 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
61 cxpexpz 26576 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵𝑐𝐾) = (𝐵𝐾))
6261breq2d 5119 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6356, 58, 60, 62syl3anc 1373 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6454, 63mpbid 232 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cn 12186  2c2 12241  cz 12529  cuz 12793  +crp 12951  cfl 13752  cexp 14026  𝑐ccxp 26464   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  dignnld  48592
  Copyright terms: Public domain W3C validator