Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ldlem Structured version   Visualization version   GIF version

Theorem dignn0ldlem 46659
Description: Lemma for dignnld 46660. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignn0ldlem ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))

Proof of Theorem dignn0ldlem
StepHypRef Expression
1 nnre 12159 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
213ad2ant2 1134 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
3 eluzelre 12773 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
433ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
5 eluz2nn 12808 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
6 nnnn0 12419 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
76nn0ge0d 12475 . . . . . 6 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
85, 7syl 17 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
983ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝐵)
10 nnrp 12925 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
11 relogbzcl 26122 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
1210, 11sylan2 593 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
13123adant3 1132 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) ∈ ℝ)
144, 9, 13recxpcld 26076 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) ∈ ℝ)
15 eluzelre 12773 . . . . 5 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℝ)
16153ad2ant3 1135 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℝ)
174, 9, 16recxpcld 26076 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐𝐾) ∈ ℝ)
181leidd 11720 . . . . . 6 (𝑁 ∈ ℕ → 𝑁𝑁)
1918adantl 482 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁𝑁)
20 eluz2cnn0n1 46563 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ (ℂ ∖ {0, 1}))
21 nncn 12160 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 nnne0 12186 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
23 eldifsn 4747 . . . . . . 7 (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
2421, 22, 23sylanbrc 583 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0}))
25 cxplogb 26134 . . . . . 6 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2620, 24, 25syl2an 596 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2719, 26breqtrrd 5133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
28273adant3 1132 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
29 eluz2 12768 . . . . . 6 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) ↔ (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾))
3012adantl 482 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) ∈ ℝ)
31 flltp1 13704 . . . . . . . . . . . 12 ((𝐵 logb 𝑁) ∈ ℝ → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
3230, 31syl 17 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
33 zre 12502 . . . . . . . . . . . . . 14 (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3433adantr 481 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3534adantr 481 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
36 zre 12502 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3736adantl 482 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
3837adantr 481 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈ ℝ)
39 ltletr 11246 . . . . . . . . . . . 12 (((𝐵 logb 𝑁) ∈ ℝ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4030, 35, 38, 39syl3anc 1371 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4132, 40mpand 693 . . . . . . . . . 10 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾))
4241ex 413 . . . . . . . . 9 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾)))
4342com23 86 . . . . . . . 8 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾)))
44433impia 1117 . . . . . . 7 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾))
4544com12 32 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4629, 45biimtrid 241 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → (𝐵 logb 𝑁) < 𝐾))
47463impia 1117 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) < 𝐾)
48 eluz2gt1 12844 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
493, 48jca 512 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
50493ad2ant1 1133 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
51 cxplt 26047 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ ((𝐵 logb 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5250, 13, 16, 51syl12anc 835 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5347, 52mpbid 231 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾))
542, 14, 17, 28, 53lelttrd 11312 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝑐𝐾))
55 eluzelcn 12774 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
56553ad2ant1 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
57 eluz2n0 12812 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
58573ad2ant1 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
59 eluzelz 12772 . . . 4 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
60593ad2ant3 1135 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
61 cxpexpz 26020 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵𝑐𝐾) = (𝐵𝐾))
6261breq2d 5117 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6356, 58, 60, 62syl3anc 1371 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6454, 63mpbid 231 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cdif 3907  {csn 4586  {cpr 4588   class class class wbr 5105  cfv 6496  (class class class)co 7356  cc 11048  cr 11049  0cc0 11050  1c1 11051   + caddc 11053   < clt 11188  cle 11189  cn 12152  2c2 12207  cz 12498  cuz 12762  +crp 12914  cfl 13694  cexp 13966  𝑐ccxp 25909   logb clogb 26112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-inf2 9576  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127  ax-pre-sup 11128  ax-addf 11129  ax-mulf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-of 7616  df-om 7802  df-1st 7920  df-2nd 7921  df-supp 8092  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8647  df-map 8766  df-pm 8767  df-ixp 8835  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-fsupp 9305  df-fi 9346  df-sup 9377  df-inf 9378  df-oi 9445  df-card 9874  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-div 11812  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-7 12220  df-8 12221  df-9 12222  df-n0 12413  df-z 12499  df-dec 12618  df-uz 12763  df-q 12873  df-rp 12915  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13267  df-ioc 13268  df-ico 13269  df-icc 13270  df-fz 13424  df-fzo 13567  df-fl 13696  df-mod 13774  df-seq 13906  df-exp 13967  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14951  df-cj 14983  df-re 14984  df-im 14985  df-sqrt 15119  df-abs 15120  df-limsup 15352  df-clim 15369  df-rlim 15370  df-sum 15570  df-ef 15949  df-sin 15951  df-cos 15952  df-pi 15954  df-struct 17018  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-ress 17112  df-plusg 17145  df-mulr 17146  df-starv 17147  df-sca 17148  df-vsca 17149  df-ip 17150  df-tset 17151  df-ple 17152  df-ds 17154  df-unif 17155  df-hom 17156  df-cco 17157  df-rest 17303  df-topn 17304  df-0g 17322  df-gsum 17323  df-topgen 17324  df-pt 17325  df-prds 17328  df-xrs 17383  df-qtop 17388  df-imas 17389  df-xps 17391  df-mre 17465  df-mrc 17466  df-acs 17468  df-mgm 18496  df-sgrp 18545  df-mnd 18556  df-submnd 18601  df-mulg 18871  df-cntz 19095  df-cmn 19562  df-psmet 20786  df-xmet 20787  df-met 20788  df-bl 20789  df-mopn 20790  df-fbas 20791  df-fg 20792  df-cnfld 20795  df-top 22241  df-topon 22258  df-topsp 22280  df-bases 22294  df-cld 22368  df-ntr 22369  df-cls 22370  df-nei 22447  df-lp 22485  df-perf 22486  df-cn 22576  df-cnp 22577  df-haus 22664  df-tx 22911  df-hmeo 23104  df-fil 23195  df-fm 23287  df-flim 23288  df-flf 23289  df-xms 23671  df-ms 23672  df-tms 23673  df-cncf 24239  df-limc 25228  df-dv 25229  df-log 25910  df-cxp 25911  df-logb 26113
This theorem is referenced by:  dignnld  46660
  Copyright terms: Public domain W3C validator