Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ldlem Structured version   Visualization version   GIF version

Theorem dignn0ldlem 47375
Description: Lemma for dignnld 47376. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignn0ldlem ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))

Proof of Theorem dignn0ldlem
StepHypRef Expression
1 nnre 12223 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
213ad2ant2 1132 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
3 eluzelre 12837 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
433ad2ant1 1131 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
5 eluz2nn 12872 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
6 nnnn0 12483 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
76nn0ge0d 12539 . . . . . 6 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
85, 7syl 17 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
983ad2ant1 1131 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝐵)
10 nnrp 12989 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
11 relogbzcl 26515 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
1210, 11sylan2 591 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
13123adant3 1130 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) ∈ ℝ)
144, 9, 13recxpcld 26467 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) ∈ ℝ)
15 eluzelre 12837 . . . . 5 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℝ)
16153ad2ant3 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℝ)
174, 9, 16recxpcld 26467 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐𝐾) ∈ ℝ)
181leidd 11784 . . . . . 6 (𝑁 ∈ ℕ → 𝑁𝑁)
1918adantl 480 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁𝑁)
20 eluz2cnn0n1 47279 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ (ℂ ∖ {0, 1}))
21 nncn 12224 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 nnne0 12250 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
23 eldifsn 4789 . . . . . . 7 (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
2421, 22, 23sylanbrc 581 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0}))
25 cxplogb 26527 . . . . . 6 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2620, 24, 25syl2an 594 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵𝑐(𝐵 logb 𝑁)) = 𝑁)
2719, 26breqtrrd 5175 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
28273adant3 1130 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ≤ (𝐵𝑐(𝐵 logb 𝑁)))
29 eluz2 12832 . . . . . 6 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) ↔ (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾))
3012adantl 480 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) ∈ ℝ)
31 flltp1 13769 . . . . . . . . . . . 12 ((𝐵 logb 𝑁) ∈ ℝ → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
3230, 31syl 17 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1))
33 zre 12566 . . . . . . . . . . . . . 14 (((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3433adantr 479 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
3534adantr 479 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ)
36 zre 12566 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3736adantl 480 . . . . . . . . . . . . 13 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
3837adantr 479 . . . . . . . . . . . 12 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈ ℝ)
39 ltletr 11310 . . . . . . . . . . . 12 (((𝐵 logb 𝑁) ∈ ℝ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4030, 35, 38, 39syl3anc 1369 . . . . . . . . . . 11 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((𝐵 logb 𝑁) < ((⌊‘(𝐵 logb 𝑁)) + 1) ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4132, 40mpand 691 . . . . . . . . . 10 (((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ)) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾))
4241ex 411 . . . . . . . . 9 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → (𝐵 logb 𝑁) < 𝐾)))
4342com23 86 . . . . . . . 8 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾 → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾)))
44433impia 1115 . . . . . . 7 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) < 𝐾))
4544com12 32 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((⌊‘(𝐵 logb 𝑁)) + 1) ≤ 𝐾) → (𝐵 logb 𝑁) < 𝐾))
4629, 45biimtrid 241 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → (𝐵 logb 𝑁) < 𝐾))
47463impia 1115 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 logb 𝑁) < 𝐾)
48 eluz2gt1 12908 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
493, 48jca 510 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
50493ad2ant1 1131 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵 ∈ ℝ ∧ 1 < 𝐵))
51 cxplt 26438 . . . . 5 (((𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ ((𝐵 logb 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5250, 13, 16, 51syl12anc 833 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝐵 logb 𝑁) < 𝐾 ↔ (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾)))
5347, 52mpbid 231 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝑐(𝐵 logb 𝑁)) < (𝐵𝑐𝐾))
542, 14, 17, 28, 53lelttrd 11376 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝑐𝐾))
55 eluzelcn 12838 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
56553ad2ant1 1131 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
57 eluz2n0 12876 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
58573ad2ant1 1131 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
59 eluzelz 12836 . . . 4 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
60593ad2ant3 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
61 cxpexpz 26411 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵𝑐𝐾) = (𝐵𝐾))
6261breq2d 5159 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6356, 58, 60, 62syl3anc 1369 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 < (𝐵𝑐𝐾) ↔ 𝑁 < (𝐵𝐾)))
6454, 63mpbid 231 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  cdif 3944  {csn 4627  {cpr 4629   class class class wbr 5147  cfv 6542  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cn 12216  2c2 12271  cz 12562  cuz 12826  +crp 12978  cfl 13759  cexp 14031  𝑐ccxp 26300   logb clogb 26505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25615  df-dv 25616  df-log 26301  df-cxp 26302  df-logb 26506
This theorem is referenced by:  dignnld  47376
  Copyright terms: Public domain W3C validator