![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig1 | Structured version Visualization version GIF version |
Description: All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig1 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12775 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
2 | 1 | exp0d 14045 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
3 | 2 | eqcomd 2742 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
4 | 3 | ad2antrl 726 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 = (𝐵↑0)) |
5 | 4 | oveq2d 7373 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = (𝐾(digit‘𝐵)(𝐵↑0))) |
6 | simprl 769 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ (ℤ≥‘2)) | |
7 | simpr 485 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
8 | 7 | anim2i 617 | . . . . . 6 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (0 ≤ 𝐾 ∧ 𝐾 ∈ ℤ)) |
9 | 8 | ancomd 462 | . . . . 5 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
10 | elnn0z 12512 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
11 | 9, 10 | sylibr 233 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℕ0) |
12 | 0nn0 12428 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 0 ∈ ℕ0) |
14 | digexp 46683 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) | |
15 | 6, 11, 13, 14 | syl3anc 1371 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) |
16 | 5, 15 | eqtrd 2776 | . 2 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
17 | eluz2nn 12809 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
18 | 17 | ad2antrl 726 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ ℕ) |
19 | simprr 771 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
20 | nn0ge0 12438 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)) |
22 | 21 | con3d 152 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 ∈ ℕ0)) |
23 | 22 | impcom 408 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 ∈ ℕ0) |
24 | 19, 23 | eldifd 3921 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ (ℤ ∖ ℕ0)) |
25 | 1nn0 12429 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
26 | 25 | a1i 11 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 ∈ ℕ0) |
27 | dignn0fr 46677 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 1 ∈ ℕ0) → (𝐾(digit‘𝐵)1) = 0) | |
28 | 18, 24, 26, 27 | syl3anc 1371 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = 0) |
29 | 0le0 12254 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
30 | breq2 5109 | . . . . . . . 8 ⊢ (𝐾 = 0 → (0 ≤ 𝐾 ↔ 0 ≤ 0)) | |
31 | 29, 30 | mpbiri 257 | . . . . . . 7 ⊢ (𝐾 = 0 → 0 ≤ 𝐾) |
32 | 31 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 = 0 → 0 ≤ 𝐾)) |
33 | 32 | con3d 152 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 = 0)) |
34 | 33 | impcom 408 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 = 0) |
35 | 34 | iffalsed 4497 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → if(𝐾 = 0, 1, 0) = 0) |
36 | 28, 35 | eqtr4d 2779 | . 2 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
37 | 16, 36 | pm2.61ian 810 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3907 ifcif 4486 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 0cc0 11051 1c1 11052 ≤ cle 11190 ℕcn 12153 2c2 12208 ℕ0cn0 12413 ℤcz 12499 ℤ≥cuz 12763 ↑cexp 13967 digitcdig 46671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-ico 13270 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-dig 46672 |
This theorem is referenced by: 0dig1 46685 |
Copyright terms: Public domain | W3C validator |