Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig1 | Structured version Visualization version GIF version |
Description: All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig1 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12523 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
2 | 1 | exp0d 13786 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
3 | 2 | eqcomd 2744 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
4 | 3 | ad2antrl 724 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 = (𝐵↑0)) |
5 | 4 | oveq2d 7271 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = (𝐾(digit‘𝐵)(𝐵↑0))) |
6 | simprl 767 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ (ℤ≥‘2)) | |
7 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
8 | 7 | anim2i 616 | . . . . . 6 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (0 ≤ 𝐾 ∧ 𝐾 ∈ ℤ)) |
9 | 8 | ancomd 461 | . . . . 5 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
10 | elnn0z 12262 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
11 | 9, 10 | sylibr 233 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℕ0) |
12 | 0nn0 12178 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 0 ∈ ℕ0) |
14 | digexp 45841 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) | |
15 | 6, 11, 13, 14 | syl3anc 1369 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) |
16 | 5, 15 | eqtrd 2778 | . 2 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
17 | eluz2nn 12553 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
18 | 17 | ad2antrl 724 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ ℕ) |
19 | simprr 769 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
20 | nn0ge0 12188 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)) |
22 | 21 | con3d 152 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 ∈ ℕ0)) |
23 | 22 | impcom 407 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 ∈ ℕ0) |
24 | 19, 23 | eldifd 3894 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ (ℤ ∖ ℕ0)) |
25 | 1nn0 12179 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
26 | 25 | a1i 11 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 ∈ ℕ0) |
27 | dignn0fr 45835 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 1 ∈ ℕ0) → (𝐾(digit‘𝐵)1) = 0) | |
28 | 18, 24, 26, 27 | syl3anc 1369 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = 0) |
29 | 0le0 12004 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
30 | breq2 5074 | . . . . . . . 8 ⊢ (𝐾 = 0 → (0 ≤ 𝐾 ↔ 0 ≤ 0)) | |
31 | 29, 30 | mpbiri 257 | . . . . . . 7 ⊢ (𝐾 = 0 → 0 ≤ 𝐾) |
32 | 31 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 = 0 → 0 ≤ 𝐾)) |
33 | 32 | con3d 152 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 = 0)) |
34 | 33 | impcom 407 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 = 0) |
35 | 34 | iffalsed 4467 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → if(𝐾 = 0, 1, 0) = 0) |
36 | 28, 35 | eqtr4d 2781 | . 2 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
37 | 16, 36 | pm2.61ian 808 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ifcif 4456 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ≤ cle 10941 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 ↑cexp 13710 digitcdig 45829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-dig 45830 |
This theorem is referenced by: 0dig1 45843 |
Copyright terms: Public domain | W3C validator |