| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dig1 | Structured version Visualization version GIF version | ||
| Description: All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| dig1 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn 12890 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
| 2 | 1 | exp0d 14180 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
| 3 | 2 | eqcomd 2743 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
| 4 | 3 | ad2antrl 728 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 = (𝐵↑0)) |
| 5 | 4 | oveq2d 7447 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = (𝐾(digit‘𝐵)(𝐵↑0))) |
| 6 | simprl 771 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ (ℤ≥‘2)) | |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
| 8 | 7 | anim2i 617 | . . . . . 6 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (0 ≤ 𝐾 ∧ 𝐾 ∈ ℤ)) |
| 9 | 8 | ancomd 461 | . . . . 5 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
| 10 | elnn0z 12626 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
| 11 | 9, 10 | sylibr 234 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℕ0) |
| 12 | 0nn0 12541 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 0 ∈ ℕ0) |
| 14 | digexp 48528 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) | |
| 15 | 6, 11, 13, 14 | syl3anc 1373 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) |
| 16 | 5, 15 | eqtrd 2777 | . 2 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| 17 | eluz2nn 12924 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
| 18 | 17 | ad2antrl 728 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ ℕ) |
| 19 | simprr 773 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
| 20 | nn0ge0 12551 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)) |
| 22 | 21 | con3d 152 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 ∈ ℕ0)) |
| 23 | 22 | impcom 407 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 ∈ ℕ0) |
| 24 | 19, 23 | eldifd 3962 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ (ℤ ∖ ℕ0)) |
| 25 | 1nn0 12542 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 ∈ ℕ0) |
| 27 | dignn0fr 48522 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 1 ∈ ℕ0) → (𝐾(digit‘𝐵)1) = 0) | |
| 28 | 18, 24, 26, 27 | syl3anc 1373 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = 0) |
| 29 | 0le0 12367 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
| 30 | breq2 5147 | . . . . . . . 8 ⊢ (𝐾 = 0 → (0 ≤ 𝐾 ↔ 0 ≤ 0)) | |
| 31 | 29, 30 | mpbiri 258 | . . . . . . 7 ⊢ (𝐾 = 0 → 0 ≤ 𝐾) |
| 32 | 31 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 = 0 → 0 ≤ 𝐾)) |
| 33 | 32 | con3d 152 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 = 0)) |
| 34 | 33 | impcom 407 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 = 0) |
| 35 | 34 | iffalsed 4536 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → if(𝐾 = 0, 1, 0) = 0) |
| 36 | 28, 35 | eqtr4d 2780 | . 2 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| 37 | 16, 36 | pm2.61ian 812 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ifcif 4525 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 ≤ cle 11296 ℕcn 12266 2c2 12321 ℕ0cn0 12526 ℤcz 12613 ℤ≥cuz 12878 ↑cexp 14102 digitcdig 48516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-dig 48517 |
| This theorem is referenced by: 0dig1 48530 |
| Copyright terms: Public domain | W3C validator |