Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig1 | Structured version Visualization version GIF version |
Description: All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig1 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12594 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
2 | 1 | exp0d 13858 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
3 | 2 | eqcomd 2744 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
4 | 3 | ad2antrl 725 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 = (𝐵↑0)) |
5 | 4 | oveq2d 7291 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = (𝐾(digit‘𝐵)(𝐵↑0))) |
6 | simprl 768 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ (ℤ≥‘2)) | |
7 | simpr 485 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
8 | 7 | anim2i 617 | . . . . . 6 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (0 ≤ 𝐾 ∧ 𝐾 ∈ ℤ)) |
9 | 8 | ancomd 462 | . . . . 5 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
10 | elnn0z 12332 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
11 | 9, 10 | sylibr 233 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℕ0) |
12 | 0nn0 12248 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 0 ∈ ℕ0) |
14 | digexp 45953 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) | |
15 | 6, 11, 13, 14 | syl3anc 1370 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) |
16 | 5, 15 | eqtrd 2778 | . 2 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
17 | eluz2nn 12624 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
18 | 17 | ad2antrl 725 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ ℕ) |
19 | simprr 770 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
20 | nn0ge0 12258 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)) |
22 | 21 | con3d 152 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 ∈ ℕ0)) |
23 | 22 | impcom 408 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 ∈ ℕ0) |
24 | 19, 23 | eldifd 3898 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ (ℤ ∖ ℕ0)) |
25 | 1nn0 12249 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
26 | 25 | a1i 11 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 ∈ ℕ0) |
27 | dignn0fr 45947 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 1 ∈ ℕ0) → (𝐾(digit‘𝐵)1) = 0) | |
28 | 18, 24, 26, 27 | syl3anc 1370 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = 0) |
29 | 0le0 12074 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
30 | breq2 5078 | . . . . . . . 8 ⊢ (𝐾 = 0 → (0 ≤ 𝐾 ↔ 0 ≤ 0)) | |
31 | 29, 30 | mpbiri 257 | . . . . . . 7 ⊢ (𝐾 = 0 → 0 ≤ 𝐾) |
32 | 31 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 = 0 → 0 ≤ 𝐾)) |
33 | 32 | con3d 152 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 = 0)) |
34 | 33 | impcom 408 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 = 0) |
35 | 34 | iffalsed 4470 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → if(𝐾 = 0, 1, 0) = 0) |
36 | 28, 35 | eqtr4d 2781 | . 2 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
37 | 16, 36 | pm2.61ian 809 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ifcif 4459 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 ≤ cle 11010 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12582 ↑cexp 13782 digitcdig 45941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-dig 45942 |
This theorem is referenced by: 0dig1 45955 |
Copyright terms: Public domain | W3C validator |