| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dig1 | Structured version Visualization version GIF version | ||
| Description: All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| dig1 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn 12765 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
| 2 | 1 | exp0d 14065 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
| 3 | 2 | eqcomd 2735 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
| 4 | 3 | ad2antrl 728 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 = (𝐵↑0)) |
| 5 | 4 | oveq2d 7369 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = (𝐾(digit‘𝐵)(𝐵↑0))) |
| 6 | simprl 770 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ (ℤ≥‘2)) | |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
| 8 | 7 | anim2i 617 | . . . . . 6 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (0 ≤ 𝐾 ∧ 𝐾 ∈ ℤ)) |
| 9 | 8 | ancomd 461 | . . . . 5 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
| 10 | elnn0z 12502 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
| 11 | 9, 10 | sylibr 234 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℕ0) |
| 12 | 0nn0 12417 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 0 ∈ ℕ0) |
| 14 | digexp 48580 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) | |
| 15 | 6, 11, 13, 14 | syl3anc 1373 | . . 3 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)(𝐵↑0)) = if(𝐾 = 0, 1, 0)) |
| 16 | 5, 15 | eqtrd 2764 | . 2 ⊢ ((0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| 17 | eluz2nn 12807 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
| 18 | 17 | ad2antrl 728 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐵 ∈ ℕ) |
| 19 | simprr 772 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
| 20 | nn0ge0 12427 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)) |
| 22 | 21 | con3d 152 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 ∈ ℕ0)) |
| 23 | 22 | impcom 407 | . . . . 5 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 ∈ ℕ0) |
| 24 | 19, 23 | eldifd 3916 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ (ℤ ∖ ℕ0)) |
| 25 | 1nn0 12418 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → 1 ∈ ℕ0) |
| 27 | dignn0fr 48574 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 1 ∈ ℕ0) → (𝐾(digit‘𝐵)1) = 0) | |
| 28 | 18, 24, 26, 27 | syl3anc 1373 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = 0) |
| 29 | 0le0 12247 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
| 30 | breq2 5099 | . . . . . . . 8 ⊢ (𝐾 = 0 → (0 ≤ 𝐾 ↔ 0 ≤ 0)) | |
| 31 | 29, 30 | mpbiri 258 | . . . . . . 7 ⊢ (𝐾 = 0 → 0 ≤ 𝐾) |
| 32 | 31 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾 = 0 → 0 ≤ 𝐾)) |
| 33 | 32 | con3d 152 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (¬ 0 ≤ 𝐾 → ¬ 𝐾 = 0)) |
| 34 | 33 | impcom 407 | . . . 4 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → ¬ 𝐾 = 0) |
| 35 | 34 | iffalsed 4489 | . . 3 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → if(𝐾 = 0, 1, 0) = 0) |
| 36 | 28, 35 | eqtr4d 2767 | . 2 ⊢ ((¬ 0 ≤ 𝐾 ∧ (𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ)) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| 37 | 16, 36 | pm2.61ian 811 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ifcif 4478 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 ≤ cle 11169 ℕcn 12146 2c2 12201 ℕ0cn0 12402 ℤcz 12489 ℤ≥cuz 12753 ↑cexp 13986 digitcdig 48568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-ico 13272 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-dig 48569 |
| This theorem is referenced by: 0dig1 48582 |
| Copyright terms: Public domain | W3C validator |