MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzgtdifelfzo Structured version   Visualization version   GIF version

Theorem eluzgtdifelfzo 13091
Description: Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
eluzgtdifelfzo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))

Proof of Theorem eluzgtdifelfzo
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 𝑁 ∈ (ℤ𝐴))
21adantl 484 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (ℤ𝐴))
3 simpl 485 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
43adantr 483 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℤ)
5 eluzelz 12245 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
65ad2antrr 724 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℤ)
7 simprr 771 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℤ)
86, 7zsubcld 12084 . . . . . 6 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁𝐵) ∈ ℤ)
98ancoms 461 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐵) ∈ ℤ)
104, 9zaddcld 12083 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴 + (𝑁𝐵)) ∈ ℤ)
11 zre 11977 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
12 zre 11977 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
13 posdif 11125 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ 0 < (𝐴𝐵)))
1413biimpd 231 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1511, 12, 14syl2anr 598 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1615adantld 493 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 0 < (𝐴𝐵)))
1716imp 409 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 0 < (𝐴𝐵))
18 resubcl 10942 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
1912, 11, 18syl2an 597 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℝ)
2019adantr 483 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴𝐵) ∈ ℝ)
21 eluzelre 12246 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
2221ad2antrl 726 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℝ)
2320, 22ltaddposd 11216 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (0 < (𝐴𝐵) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
2417, 23mpbid 234 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝑁 + (𝐴𝐵)))
25 zcn 11978 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2625ad2antrr 724 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℂ)
27 eluzelcn 12247 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℂ)
2827ad2antrl 726 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℂ)
29 zcn 11978 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3029adantl 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3130adantr 483 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐵 ∈ ℂ)
32 addsub12 10891 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝑁𝐵)) = (𝑁 + (𝐴𝐵)))
3332breq2d 5069 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3426, 28, 31, 33syl3anc 1366 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3524, 34mpbird 259 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝐴 + (𝑁𝐵)))
36 elfzo2 13033 . . . 4 (𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ↔ (𝑁 ∈ (ℤ𝐴) ∧ (𝐴 + (𝑁𝐵)) ∈ ℤ ∧ 𝑁 < (𝐴 + (𝑁𝐵))))
372, 10, 35, 36syl3anbrc 1338 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))))
38 fzosubel3 13090 . . 3 ((𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ∧ (𝑁𝐵) ∈ ℤ) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
3937, 9, 38syl2anc 586 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
4039ex 415 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082  wcel 2108   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529   + caddc 10532   < clt 10667  cmin 10862  cz 11973  cuz 12235  ..^cfzo 13025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026
This theorem is referenced by:  ige2m2fzo  13092
  Copyright terms: Public domain W3C validator