MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzgtdifelfzo Structured version   Visualization version   GIF version

Theorem eluzgtdifelfzo 13439
Description: Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
eluzgtdifelfzo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))

Proof of Theorem eluzgtdifelfzo
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 𝑁 ∈ (ℤ𝐴))
21adantl 482 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (ℤ𝐴))
3 simpl 483 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
43adantr 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℤ)
5 eluzelz 12583 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
65ad2antrr 723 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℤ)
7 simprr 770 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℤ)
86, 7zsubcld 12422 . . . . . 6 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁𝐵) ∈ ℤ)
98ancoms 459 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐵) ∈ ℤ)
104, 9zaddcld 12421 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴 + (𝑁𝐵)) ∈ ℤ)
11 zre 12315 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
12 zre 12315 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
13 posdif 11460 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ 0 < (𝐴𝐵)))
1413biimpd 228 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1511, 12, 14syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1615adantld 491 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 0 < (𝐴𝐵)))
1716imp 407 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 0 < (𝐴𝐵))
18 resubcl 11277 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
1912, 11, 18syl2an 596 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℝ)
2019adantr 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴𝐵) ∈ ℝ)
21 eluzelre 12584 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
2221ad2antrl 725 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℝ)
2320, 22ltaddposd 11551 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (0 < (𝐴𝐵) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
2417, 23mpbid 231 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝑁 + (𝐴𝐵)))
25 zcn 12316 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2625ad2antrr 723 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℂ)
27 eluzelcn 12585 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℂ)
2827ad2antrl 725 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℂ)
29 zcn 12316 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3029adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3130adantr 481 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐵 ∈ ℂ)
32 addsub12 11226 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝑁𝐵)) = (𝑁 + (𝐴𝐵)))
3332breq2d 5091 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3426, 28, 31, 33syl3anc 1370 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3524, 34mpbird 256 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝐴 + (𝑁𝐵)))
36 elfzo2 13381 . . . 4 (𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ↔ (𝑁 ∈ (ℤ𝐴) ∧ (𝐴 + (𝑁𝐵)) ∈ ℤ ∧ 𝑁 < (𝐴 + (𝑁𝐵))))
372, 10, 35, 36syl3anbrc 1342 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))))
38 fzosubel3 13438 . . 3 ((𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ∧ (𝑁𝐵) ∈ ℤ) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
3937, 9, 38syl2anc 584 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
4039ex 413 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2110   class class class wbr 5079  cfv 6431  (class class class)co 7269  cc 10862  cr 10863  0cc0 10864   + caddc 10867   < clt 11002  cmin 11197  cz 12311  cuz 12573  ..^cfzo 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-n0 12226  df-z 12312  df-uz 12574  df-fz 13231  df-fzo 13374
This theorem is referenced by:  ige2m2fzo  13440
  Copyright terms: Public domain W3C validator