Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulp1mod1 | Structured version Visualization version GIF version |
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
Ref | Expression |
---|---|
mulp1mod1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12450 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 485 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℂ) |
3 | zcn 12181 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | adantr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℂ) |
5 | 2, 4 | mulcomd 10854 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁)) |
6 | 5 | oveq1d 7228 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁)) |
7 | eluz2nn 12480 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
8 | 7 | nnrpd 12626 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ+) |
9 | mulmod0 13450 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℝ+) → ((𝐴 · 𝑁) mod 𝑁) = 0) | |
10 | 8, 9 | sylan2 596 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0) |
11 | 6, 10 | eqtrd 2777 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0) |
12 | 11 | oveq1d 7228 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1)) |
13 | 0p1e1 11952 | . . . 4 ⊢ (0 + 1) = 1 | |
14 | 12, 13 | eqtrdi 2794 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1) |
15 | 14 | oveq1d 7228 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁)) |
16 | eluzelre 12449 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
17 | 16 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ) |
18 | zre 12180 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
19 | 18 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℝ) |
20 | 17, 19 | remulcld 10863 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) ∈ ℝ) |
21 | 1red 10834 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 1 ∈ ℝ) | |
22 | 8 | adantl 485 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ+) |
23 | modaddmod 13483 | . . 3 ⊢ (((𝑁 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) | |
24 | 20, 21, 22, 23 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) |
25 | eluz2gt1 12516 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
26 | 16, 25 | jca 515 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
27 | 26 | adantl 485 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
28 | 1mod 13476 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | |
29 | 27, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (1 mod 𝑁) = 1) |
30 | 15, 24, 29 | 3eqtr3d 2785 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 < clt 10867 2c2 11885 ℤcz 12176 ℤ≥cuz 12438 ℝ+crp 12586 mod cmo 13442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fl 13367 df-mod 13443 |
This theorem is referenced by: fmtnoprmfac2lem1 44691 |
Copyright terms: Public domain | W3C validator |