![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulp1mod1 | Structured version Visualization version GIF version |
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
Ref | Expression |
---|---|
mulp1mod1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12915 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℂ) |
3 | zcn 12644 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℂ) |
5 | 2, 4 | mulcomd 11311 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁)) |
6 | 5 | oveq1d 7463 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁)) |
7 | eluz2nn 12949 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
8 | 7 | nnrpd 13097 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ+) |
9 | mulmod0 13928 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℝ+) → ((𝐴 · 𝑁) mod 𝑁) = 0) | |
10 | 8, 9 | sylan2 592 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0) |
11 | 6, 10 | eqtrd 2780 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0) |
12 | 11 | oveq1d 7463 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1)) |
13 | 0p1e1 12415 | . . . 4 ⊢ (0 + 1) = 1 | |
14 | 12, 13 | eqtrdi 2796 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1) |
15 | 14 | oveq1d 7463 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁)) |
16 | eluzelre 12914 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
17 | 16 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ) |
18 | zre 12643 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℝ) |
20 | 17, 19 | remulcld 11320 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) ∈ ℝ) |
21 | 1red 11291 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 1 ∈ ℝ) | |
22 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ+) |
23 | modaddmod 13961 | . . 3 ⊢ (((𝑁 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) | |
24 | 20, 21, 22, 23 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) |
25 | eluz2gt1 12985 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
26 | 16, 25 | jca 511 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
27 | 26 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
28 | 1mod 13954 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | |
29 | 27, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (1 mod 𝑁) = 1) |
30 | 15, 24, 29 | 3eqtr3d 2788 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 2c2 12348 ℤcz 12639 ℤ≥cuz 12903 ℝ+crp 13057 mod cmo 13920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fl 13843 df-mod 13921 |
This theorem is referenced by: fmtnoprmfac2lem1 47440 |
Copyright terms: Public domain | W3C validator |