![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulp1mod1 | Structured version Visualization version GIF version |
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
Ref | Expression |
---|---|
mulp1mod1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12888 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℂ) |
3 | zcn 12616 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℂ) |
5 | 2, 4 | mulcomd 11280 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁)) |
6 | 5 | oveq1d 7446 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁)) |
7 | eluz2nn 12922 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
8 | 7 | nnrpd 13073 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ+) |
9 | mulmod0 13914 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℝ+) → ((𝐴 · 𝑁) mod 𝑁) = 0) | |
10 | 8, 9 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0) |
11 | 6, 10 | eqtrd 2775 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0) |
12 | 11 | oveq1d 7446 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1)) |
13 | 0p1e1 12386 | . . . 4 ⊢ (0 + 1) = 1 | |
14 | 12, 13 | eqtrdi 2791 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1) |
15 | 14 | oveq1d 7446 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁)) |
16 | eluzelre 12887 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
17 | 16 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ) |
18 | zre 12615 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℝ) |
20 | 17, 19 | remulcld 11289 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) ∈ ℝ) |
21 | 1red 11260 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 1 ∈ ℝ) | |
22 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ+) |
23 | modaddmod 13947 | . . 3 ⊢ (((𝑁 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) | |
24 | 20, 21, 22, 23 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) |
25 | eluz2gt1 12960 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
26 | 16, 25 | jca 511 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
27 | 26 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
28 | 1mod 13940 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | |
29 | 27, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (1 mod 𝑁) = 1) |
30 | 15, 24, 29 | 3eqtr3d 2783 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 < clt 11293 2c2 12319 ℤcz 12611 ℤ≥cuz 12876 ℝ+crp 13032 mod cmo 13906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fl 13829 df-mod 13907 |
This theorem is referenced by: fmtnoprmfac2lem1 47491 |
Copyright terms: Public domain | W3C validator |