MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulp1mod1 Structured version   Visualization version   GIF version

Theorem mulp1mod1 13949
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 12888 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℂ)
3 zcn 12616 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
43adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℂ)
52, 4mulcomd 11280 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁))
65oveq1d 7446 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁))
7 eluz2nn 12922 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
87nnrpd 13073 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ+)
9 mulmod0 13914 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℝ+) → ((𝐴 · 𝑁) mod 𝑁) = 0)
108, 9sylan2 593 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0)
116, 10eqtrd 2775 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0)
1211oveq1d 7446 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1))
13 0p1e1 12386 . . . 4 (0 + 1) = 1
1412, 13eqtrdi 2791 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1)
1514oveq1d 7446 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁))
16 eluzelre 12887 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
1716adantl 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
18 zre 12615 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1918adantr 480 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
2017, 19remulcld 11289 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) ∈ ℝ)
21 1red 11260 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℝ)
228adantl 481 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ+)
23 modaddmod 13947 . . 3 (((𝑁 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
2420, 21, 22, 23syl3anc 1370 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
25 eluz2gt1 12960 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
2616, 25jca 511 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
2726adantl 481 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
28 1mod 13940 . . 3 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
2927, 28syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (1 mod 𝑁) = 1)
3015, 24, 293eqtr3d 2783 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  2c2 12319  cz 12611  cuz 12876  +crp 13032   mod cmo 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907
This theorem is referenced by:  fmtnoprmfac2lem1  47491
  Copyright terms: Public domain W3C validator