Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulp1mod1 | Structured version Visualization version GIF version |
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
Ref | Expression |
---|---|
mulp1mod1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12523 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℂ) |
3 | zcn 12254 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℂ) |
5 | 2, 4 | mulcomd 10927 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁)) |
6 | 5 | oveq1d 7270 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁)) |
7 | eluz2nn 12553 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
8 | 7 | nnrpd 12699 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ+) |
9 | mulmod0 13525 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℝ+) → ((𝐴 · 𝑁) mod 𝑁) = 0) | |
10 | 8, 9 | sylan2 592 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0) |
11 | 6, 10 | eqtrd 2778 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0) |
12 | 11 | oveq1d 7270 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1)) |
13 | 0p1e1 12025 | . . . 4 ⊢ (0 + 1) = 1 | |
14 | 12, 13 | eqtrdi 2795 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1) |
15 | 14 | oveq1d 7270 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁)) |
16 | eluzelre 12522 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
17 | 16 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ) |
18 | zre 12253 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℝ) |
20 | 17, 19 | remulcld 10936 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 · 𝐴) ∈ ℝ) |
21 | 1red 10907 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 1 ∈ ℝ) | |
22 | 8 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑁 ∈ ℝ+) |
23 | modaddmod 13558 | . . 3 ⊢ (((𝑁 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) | |
24 | 20, 21, 22, 23 | syl3anc 1369 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁)) |
25 | eluz2gt1 12589 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
26 | 16, 25 | jca 511 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
27 | 26 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
28 | 1mod 13551 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | |
29 | 27, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (1 mod 𝑁) = 1) |
30 | 15, 24, 29 | 3eqtr3d 2786 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 2c2 11958 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 mod cmo 13517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 |
This theorem is referenced by: fmtnoprmfac2lem1 44906 |
Copyright terms: Public domain | W3C validator |