![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk2 | Structured version Visualization version GIF version |
Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg 29775, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
numclwwlk.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
Ref | Expression |
---|---|
numclwwlk2 | ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12856 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
2 | 2cnd 12312 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
3 | 1, 2 | npcand 11597 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) + 2) = 𝑁) |
4 | 3 | eqcomd 2733 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 = ((𝑁 − 2) + 2)) |
5 | 4 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑁 = ((𝑁 − 2) + 2)) |
6 | 5 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑁 = ((𝑁 − 2) + 2)) |
7 | 6 | oveq2d 7430 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋𝐻𝑁) = (𝑋𝐻((𝑁 − 2) + 2))) |
8 | 7 | fveq2d 6895 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) |
9 | simplr 768 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ FriendGraph ) | |
10 | simpr2 1193 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑋 ∈ 𝑉) | |
11 | uz3m2nn 12897 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | |
12 | 11 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑁 − 2) ∈ ℕ) |
13 | 12 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑁 − 2) ∈ ℕ) |
14 | numclwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | numclwwlk.q | . . . 4 ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) | |
16 | numclwwlk.h | . . . 4 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
17 | 14, 15, 16 | numclwwlk2lem3 30177 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) |
18 | 9, 10, 13, 17 | syl3anc 1369 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) |
19 | simpl 482 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) → 𝐺 RegUSGraph 𝐾) | |
20 | simp1 1134 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑉 ∈ Fin) | |
21 | 19, 20 | anim12i 612 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin)) |
22 | 11 | anim2i 616 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) |
23 | 22 | 3adant1 1128 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) |
24 | 23 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) |
25 | 14, 15 | numclwwlkqhash 30172 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
26 | 21, 24, 25 | syl2anc 583 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
27 | 8, 18, 26 | 3eqtr2d 2773 | 1 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 {crab 3427 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 Fincfn 8955 0cc0 11130 + caddc 11133 − cmin 11466 ℕcn 12234 2c2 12289 3c3 12290 ℤ≥cuz 12844 ↑cexp 14050 ♯chash 14313 lastSclsw 14536 Vtxcvtx 28796 RegUSGraph crusgr 29357 WWalksN cwwlksn 29624 ClWWalksNOncclwwlknon 29884 FriendGraph cfrgr 30055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-oi 9525 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-rp 12999 df-xadd 13117 df-fz 13509 df-fzo 13652 df-seq 13991 df-exp 14051 df-hash 14314 df-word 14489 df-lsw 14537 df-concat 14545 df-s1 14570 df-substr 14615 df-pfx 14645 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-sum 15657 df-vtx 28798 df-iedg 28799 df-edg 28848 df-uhgr 28858 df-ushgr 28859 df-upgr 28882 df-umgr 28883 df-uspgr 28950 df-usgr 28951 df-fusgr 29117 df-nbgr 29133 df-vtxdg 29267 df-rgr 29358 df-rusgr 29359 df-wwlks 29628 df-wwlksn 29629 df-wwlksnon 29630 df-clwwlk 29779 df-clwwlkn 29822 df-clwwlknon 29885 df-frgr 30056 |
This theorem is referenced by: numclwwlk3 30182 |
Copyright terms: Public domain | W3C validator |