|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > numclwwlk2 | Structured version Visualization version GIF version | ||
| Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg 29997, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-May-2022.) | 
| Ref | Expression | 
|---|---|
| numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) | 
| numclwwlk.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | 
| Ref | Expression | 
|---|---|
| numclwwlk2 | ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluzelcn 12890 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
| 2 | 2cnd 12344 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
| 3 | 1, 2 | npcand 11624 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) + 2) = 𝑁) | 
| 4 | 3 | eqcomd 2743 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 = ((𝑁 − 2) + 2)) | 
| 5 | 4 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑁 = ((𝑁 − 2) + 2)) | 
| 6 | 5 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑁 = ((𝑁 − 2) + 2)) | 
| 7 | 6 | oveq2d 7447 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋𝐻𝑁) = (𝑋𝐻((𝑁 − 2) + 2))) | 
| 8 | 7 | fveq2d 6910 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) | 
| 9 | simplr 769 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ FriendGraph ) | |
| 10 | simpr2 1196 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑋 ∈ 𝑉) | |
| 11 | uz3m2nn 12933 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | |
| 12 | 11 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑁 − 2) ∈ ℕ) | 
| 13 | 12 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑁 − 2) ∈ ℕ) | 
| 14 | numclwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 15 | numclwwlk.q | . . . 4 ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) | |
| 16 | numclwwlk.h | . . . 4 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
| 17 | 14, 15, 16 | numclwwlk2lem3 30399 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) | 
| 18 | 9, 10, 13, 17 | syl3anc 1373 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) | 
| 19 | simpl 482 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) → 𝐺 RegUSGraph 𝐾) | |
| 20 | simp1 1137 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑉 ∈ Fin) | |
| 21 | 19, 20 | anim12i 613 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin)) | 
| 22 | 11 | anim2i 617 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) | 
| 23 | 22 | 3adant1 1131 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) | 
| 24 | 23 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) | 
| 25 | 14, 15 | numclwwlkqhash 30394 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) | 
| 26 | 21, 24, 25 | syl2anc 584 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) | 
| 27 | 8, 18, 26 | 3eqtr2d 2783 | 1 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Fincfn 8985 0cc0 11155 + caddc 11158 − cmin 11492 ℕcn 12266 2c2 12321 3c3 12322 ℤ≥cuz 12878 ↑cexp 14102 ♯chash 14369 lastSclsw 14600 Vtxcvtx 29013 RegUSGraph crusgr 29574 WWalksN cwwlksn 29846 ClWWalksNOncclwwlknon 30106 FriendGraph cfrgr 30277 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-rp 13035 df-xadd 13155 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-lsw 14601 df-concat 14609 df-s1 14634 df-substr 14679 df-pfx 14709 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-vtx 29015 df-iedg 29016 df-edg 29065 df-uhgr 29075 df-ushgr 29076 df-upgr 29099 df-umgr 29100 df-uspgr 29167 df-usgr 29168 df-fusgr 29334 df-nbgr 29350 df-vtxdg 29484 df-rgr 29575 df-rusgr 29576 df-wwlks 29850 df-wwlksn 29851 df-wwlksnon 29852 df-clwwlk 30001 df-clwwlkn 30044 df-clwwlknon 30107 df-frgr 30278 | 
| This theorem is referenced by: numclwwlk3 30404 | 
| Copyright terms: Public domain | W3C validator |