MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2 Structured version   Visualization version   GIF version

Theorem numclwwlk2 29623
Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg 29220, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtxβ€˜πΊ)
numclwwlk.q 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
numclwwlk.h 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
Assertion
Ref Expression
numclwwlk2 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀   𝑀,𝐾   𝑀,𝑉
Allowed substitution hints:   𝑄(𝑀,𝑣,𝑛)   𝐻(𝑀,𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk2
StepHypRef Expression
1 eluzelcn 12830 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„‚)
2 2cnd 12286 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 2 ∈ β„‚)
31, 2npcand 11571 . . . . . . 7 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ ((𝑁 βˆ’ 2) + 2) = 𝑁)
43eqcomd 2738 . . . . . 6 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 = ((𝑁 βˆ’ 2) + 2))
543ad2ant3 1135 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑁 = ((𝑁 βˆ’ 2) + 2))
65adantl 482 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑁 = ((𝑁 βˆ’ 2) + 2))
76oveq2d 7421 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋𝐻𝑁) = (𝑋𝐻((𝑁 βˆ’ 2) + 2)))
87fveq2d 6892 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝐻𝑁)) = (β™―β€˜(𝑋𝐻((𝑁 βˆ’ 2) + 2))))
9 simplr 767 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 ∈ FriendGraph )
10 simpr2 1195 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
11 uz3m2nn 12871 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
12113ad2ant3 1135 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 2) ∈ β„•)
1312adantl 482 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑁 βˆ’ 2) ∈ β„•)
14 numclwwlk.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
15 numclwwlk.q . . . 4 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„• ↦ {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑣 ∧ (lastSβ€˜π‘€) β‰  𝑣)})
16 numclwwlk.h . . . 4 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
1714, 15, 16numclwwlk2lem3 29622 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•) β†’ (β™―β€˜(𝑋𝑄(𝑁 βˆ’ 2))) = (β™―β€˜(𝑋𝐻((𝑁 βˆ’ 2) + 2))))
189, 10, 13, 17syl3anc 1371 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝑄(𝑁 βˆ’ 2))) = (β™―β€˜(𝑋𝐻((𝑁 βˆ’ 2) + 2))))
19 simpl 483 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) β†’ 𝐺 RegUSGraph 𝐾)
20 simp1 1136 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑉 ∈ Fin)
2119, 20anim12i 613 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin))
2211anim2i 617 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•))
23223adant1 1130 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•))
2423adantl 482 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•))
2514, 15numclwwlkqhash 29617 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ (𝑁 βˆ’ 2) ∈ β„•)) β†’ (β™―β€˜(𝑋𝑄(𝑁 βˆ’ 2))) = ((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
2621, 24, 25syl2anc 584 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝑄(𝑁 βˆ’ 2))) = ((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
278, 18, 263eqtr2d 2778 1 (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 βˆ’ 2)) βˆ’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Fincfn 8935  0cc0 11106   + caddc 11109   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  3c3 12264  β„€β‰₯cuz 12818  β†‘cexp 14023  β™―chash 14286  lastSclsw 14508  Vtxcvtx 28245   RegUSGraph crusgr 28802   WWalksN cwwlksn 29069  ClWWalksNOncclwwlknon 29329   FriendGraph cfrgr 29500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-vtx 28247  df-iedg 28248  df-edg 28297  df-uhgr 28307  df-ushgr 28308  df-upgr 28331  df-umgr 28332  df-uspgr 28399  df-usgr 28400  df-fusgr 28563  df-nbgr 28579  df-vtxdg 28712  df-rgr 28803  df-rusgr 28804  df-wwlks 29073  df-wwlksn 29074  df-wwlksnon 29075  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330  df-frgr 29501
This theorem is referenced by:  numclwwlk3  29627
  Copyright terms: Public domain W3C validator