![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk2 | Structured version Visualization version GIF version |
Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg 30007, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwwlk.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
numclwwlk.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
Ref | Expression |
---|---|
numclwwlk2 | ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12888 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
2 | 2cnd 12342 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
3 | 1, 2 | npcand 11622 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) + 2) = 𝑁) |
4 | 3 | eqcomd 2741 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 = ((𝑁 − 2) + 2)) |
5 | 4 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑁 = ((𝑁 − 2) + 2)) |
6 | 5 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑁 = ((𝑁 − 2) + 2)) |
7 | 6 | oveq2d 7447 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋𝐻𝑁) = (𝑋𝐻((𝑁 − 2) + 2))) |
8 | 7 | fveq2d 6911 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) |
9 | simplr 769 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝐺 ∈ FriendGraph ) | |
10 | simpr2 1194 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → 𝑋 ∈ 𝑉) | |
11 | uz3m2nn 12931 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | |
12 | 11 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑁 − 2) ∈ ℕ) |
13 | 12 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑁 − 2) ∈ ℕ) |
14 | numclwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | numclwwlk.q | . . . 4 ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) | |
16 | numclwwlk.h | . . . 4 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
17 | 14, 15, 16 | numclwwlk2lem3 30409 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) |
18 | 9, 10, 13, 17 | syl3anc 1370 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2)))) |
19 | simpl 482 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) → 𝐺 RegUSGraph 𝐾) | |
20 | simp1 1135 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑉 ∈ Fin) | |
21 | 19, 20 | anim12i 613 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin)) |
22 | 11 | anim2i 617 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) |
23 | 22 | 3adant1 1129 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) |
24 | 23 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) |
25 | 14, 15 | numclwwlkqhash 30404 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ (𝑁 − 2) ∈ ℕ)) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
26 | 21, 24, 25 | syl2anc 584 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
27 | 8, 18, 26 | 3eqtr2d 2781 | 1 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Fincfn 8984 0cc0 11153 + caddc 11156 − cmin 11490 ℕcn 12264 2c2 12319 3c3 12320 ℤ≥cuz 12876 ↑cexp 14099 ♯chash 14366 lastSclsw 14597 Vtxcvtx 29028 RegUSGraph crusgr 29589 WWalksN cwwlksn 29856 ClWWalksNOncclwwlknon 30116 FriendGraph cfrgr 30287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-xadd 13153 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-vtx 29030 df-iedg 29031 df-edg 29080 df-uhgr 29090 df-ushgr 29091 df-upgr 29114 df-umgr 29115 df-uspgr 29182 df-usgr 29183 df-fusgr 29349 df-nbgr 29365 df-vtxdg 29499 df-rgr 29590 df-rusgr 29591 df-wwlks 29860 df-wwlksn 29861 df-wwlksnon 29862 df-clwwlk 30011 df-clwwlkn 30054 df-clwwlknon 30117 df-frgr 30288 |
This theorem is referenced by: numclwwlk3 30414 |
Copyright terms: Public domain | W3C validator |