![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk2 | Structured version Visualization version GIF version |
Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg 29220, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlk.v | β’ π = (VtxβπΊ) |
numclwwlk.q | β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) |
numclwwlk.h | β’ π» = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) |
Ref | Expression |
---|---|
numclwwlk2 | β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (β―β(ππ»π)) = ((πΎβ(π β 2)) β (β―β(π(ClWWalksNOnβπΊ)(π β 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12830 | . . . . . . . 8 β’ (π β (β€β₯β3) β π β β) | |
2 | 2cnd 12286 | . . . . . . . 8 β’ (π β (β€β₯β3) β 2 β β) | |
3 | 1, 2 | npcand 11571 | . . . . . . 7 β’ (π β (β€β₯β3) β ((π β 2) + 2) = π) |
4 | 3 | eqcomd 2738 | . . . . . 6 β’ (π β (β€β₯β3) β π = ((π β 2) + 2)) |
5 | 4 | 3ad2ant3 1135 | . . . . 5 β’ ((π β Fin β§ π β π β§ π β (β€β₯β3)) β π = ((π β 2) + 2)) |
6 | 5 | adantl 482 | . . . 4 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β π = ((π β 2) + 2)) |
7 | 6 | oveq2d 7421 | . . 3 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (ππ»π) = (ππ»((π β 2) + 2))) |
8 | 7 | fveq2d 6892 | . 2 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (β―β(ππ»π)) = (β―β(ππ»((π β 2) + 2)))) |
9 | simplr 767 | . . 3 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β πΊ β FriendGraph ) | |
10 | simpr2 1195 | . . 3 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β π β π) | |
11 | uz3m2nn 12871 | . . . . 5 β’ (π β (β€β₯β3) β (π β 2) β β) | |
12 | 11 | 3ad2ant3 1135 | . . . 4 β’ ((π β Fin β§ π β π β§ π β (β€β₯β3)) β (π β 2) β β) |
13 | 12 | adantl 482 | . . 3 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (π β 2) β β) |
14 | numclwwlk.v | . . . 4 β’ π = (VtxβπΊ) | |
15 | numclwwlk.q | . . . 4 β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) | |
16 | numclwwlk.h | . . . 4 β’ π» = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) | |
17 | 14, 15, 16 | numclwwlk2lem3 29622 | . . 3 β’ ((πΊ β FriendGraph β§ π β π β§ (π β 2) β β) β (β―β(ππ(π β 2))) = (β―β(ππ»((π β 2) + 2)))) |
18 | 9, 10, 13, 17 | syl3anc 1371 | . 2 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (β―β(ππ(π β 2))) = (β―β(ππ»((π β 2) + 2)))) |
19 | simpl 483 | . . . 4 β’ ((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β πΊ RegUSGraph πΎ) | |
20 | simp1 1136 | . . . 4 β’ ((π β Fin β§ π β π β§ π β (β€β₯β3)) β π β Fin) | |
21 | 19, 20 | anim12i 613 | . . 3 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (πΊ RegUSGraph πΎ β§ π β Fin)) |
22 | 11 | anim2i 617 | . . . . 5 β’ ((π β π β§ π β (β€β₯β3)) β (π β π β§ (π β 2) β β)) |
23 | 22 | 3adant1 1130 | . . . 4 β’ ((π β Fin β§ π β π β§ π β (β€β₯β3)) β (π β π β§ (π β 2) β β)) |
24 | 23 | adantl 482 | . . 3 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (π β π β§ (π β 2) β β)) |
25 | 14, 15 | numclwwlkqhash 29617 | . . 3 β’ (((πΊ RegUSGraph πΎ β§ π β Fin) β§ (π β π β§ (π β 2) β β)) β (β―β(ππ(π β 2))) = ((πΎβ(π β 2)) β (β―β(π(ClWWalksNOnβπΊ)(π β 2))))) |
26 | 21, 24, 25 | syl2anc 584 | . 2 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (β―β(ππ(π β 2))) = ((πΎβ(π β 2)) β (β―β(π(ClWWalksNOnβπΊ)(π β 2))))) |
27 | 8, 18, 26 | 3eqtr2d 2778 | 1 β’ (((πΊ RegUSGraph πΎ β§ πΊ β FriendGraph ) β§ (π β Fin β§ π β π β§ π β (β€β₯β3))) β (β―β(ππ»π)) = ((πΎβ(π β 2)) β (β―β(π(ClWWalksNOnβπΊ)(π β 2))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 {crab 3432 class class class wbr 5147 βcfv 6540 (class class class)co 7405 β cmpo 7407 Fincfn 8935 0cc0 11106 + caddc 11109 β cmin 11440 βcn 12208 2c2 12263 3c3 12264 β€β₯cuz 12818 βcexp 14023 β―chash 14286 lastSclsw 14508 Vtxcvtx 28245 RegUSGraph crusgr 28802 WWalksN cwwlksn 29069 ClWWalksNOncclwwlknon 29329 FriendGraph cfrgr 29500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-rp 12971 df-xadd 13089 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-word 14461 df-lsw 14509 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-vtx 28247 df-iedg 28248 df-edg 28297 df-uhgr 28307 df-ushgr 28308 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-fusgr 28563 df-nbgr 28579 df-vtxdg 28712 df-rgr 28803 df-rusgr 28804 df-wwlks 29073 df-wwlksn 29074 df-wwlksnon 29075 df-clwwlk 29224 df-clwwlkn 29267 df-clwwlknon 29330 df-frgr 29501 |
This theorem is referenced by: numclwwlk3 29627 |
Copyright terms: Public domain | W3C validator |