MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2 Structured version   Visualization version   GIF version

Theorem numclwwlk2 28159
Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg 27755, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝐾   𝑤,𝑉
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk2
StepHypRef Expression
1 eluzelcn 12254 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
2 2cnd 11714 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
31, 2npcand 11000 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
43eqcomd 2827 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 𝑁 = ((𝑁 − 2) + 2))
543ad2ant3 1131 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 = ((𝑁 − 2) + 2))
65adantl 484 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 = ((𝑁 − 2) + 2))
76oveq2d 7171 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐻𝑁) = (𝑋𝐻((𝑁 − 2) + 2)))
87fveq2d 6673 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐻𝑁)) = (♯‘(𝑋𝐻((𝑁 − 2) + 2))))
9 simplr 767 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FriendGraph )
10 simpr2 1191 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
11 uz3m2nn 12290 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
12113ad2ant3 1131 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ)
1312adantl 484 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
14 numclwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
15 numclwwlk.q . . . 4 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
16 numclwwlk.h . . . 4 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
1714, 15, 16numclwwlk2lem3 28158 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2))))
189, 10, 13, 17syl3anc 1367 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2))))
19 simpl 485 . . . 4 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) → 𝐺 RegUSGraph 𝐾)
20 simp1 1132 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ∈ Fin)
2119, 20anim12i 614 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐺 RegUSGraph 𝐾𝑉 ∈ Fin))
2211anim2i 618 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
23223adant1 1126 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
2423adantl 484 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
2514, 15numclwwlkqhash 28153 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ)) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
2621, 24, 25syl2anc 586 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
278, 18, 263eqtr2d 2862 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  {crab 3142   class class class wbr 5065  cfv 6354  (class class class)co 7155  cmpo 7157  Fincfn 8508  0cc0 10536   + caddc 10539  cmin 10869  cn 11637  2c2 11691  3c3 11692  cuz 12242  cexp 13428  chash 13689  lastSclsw 13913  Vtxcvtx 26780   RegUSGraph crusgr 27337   WWalksN cwwlksn 27603  ClWWalksNOncclwwlknon 27865   FriendGraph cfrgr 28036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-rp 12389  df-xadd 12507  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-word 13861  df-lsw 13914  df-concat 13922  df-s1 13949  df-substr 14002  df-pfx 14032  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-vtx 26782  df-iedg 26783  df-edg 26832  df-uhgr 26842  df-ushgr 26843  df-upgr 26866  df-umgr 26867  df-uspgr 26934  df-usgr 26935  df-fusgr 27098  df-nbgr 27114  df-vtxdg 27247  df-rgr 27338  df-rusgr 27339  df-wwlks 27607  df-wwlksn 27608  df-wwlksnon 27609  df-clwwlk 27759  df-clwwlkn 27802  df-clwwlknon 27866  df-frgr 28037
This theorem is referenced by:  numclwwlk3  28163
  Copyright terms: Public domain W3C validator