MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdfv2 Structured version   Visualization version   GIF version

Theorem swrdfv2 14607
Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.)
Assertion
Ref Expression
swrdfv2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))

Proof of Theorem swrdfv2
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝑆 ∈ Word 𝑉)
2 simpl 483 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℕ0)
3 eluznn0 12897 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℕ0)
4 eluzle 12831 . . . . . . . . 9 (𝐿 ∈ (ℤ𝐹) → 𝐹𝐿)
54adantl 482 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹𝐿)
62, 3, 53jca 1128 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
763ad2ant2 1134 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
8 elfz2nn0 13588 . . . . . 6 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
97, 8sylibr 233 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ (0...𝐿))
103anim1i 615 . . . . . . 7 (((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
11103adant1 1130 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
12 lencl 14479 . . . . . . . 8 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
13123ad2ant1 1133 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (♯‘𝑆) ∈ ℕ0)
14 fznn0 13589 . . . . . . 7 ((♯‘𝑆) ∈ ℕ0 → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1513, 14syl 17 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1611, 15mpbird 256 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 ∈ (0...(♯‘𝑆)))
171, 9, 163jca 1128 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
1817adantr 481 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
19 nn0cn 12478 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℂ)
20 eluzelcn 12830 . . . . . . . . . 10 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℂ)
21 pncan3 11464 . . . . . . . . . 10 ((𝐹 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐹 + (𝐿𝐹)) = 𝐿)
2219, 20, 21syl2an 596 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 + (𝐿𝐹)) = 𝐿)
2322eqcomd 2738 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 = (𝐹 + (𝐿𝐹)))
24233ad2ant2 1134 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 = (𝐹 + (𝐿𝐹)))
2524oveq2d 7421 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹..^𝐿) = (𝐹..^(𝐹 + (𝐿𝐹))))
2625eleq2d 2819 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑋 ∈ (𝐹..^𝐿) ↔ 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹)))))
2726biimpa 477 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))))
28 eluzelz 12828 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℤ)
2928adantl 482 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℤ)
30 nn0z 12579 . . . . . . . 8 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
3130adantr 481 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℤ)
3229, 31zsubcld 12667 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐿𝐹) ∈ ℤ)
33323ad2ant2 1134 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿𝐹) ∈ ℤ)
3433adantr 481 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝐿𝐹) ∈ ℤ)
35 fzosubel3 13689 . . . 4 ((𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))) ∧ (𝐿𝐹) ∈ ℤ) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
3627, 34, 35syl2anc 584 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
37 swrdfv 14594 . . 3 (((𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ (𝑋𝐹) ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
3818, 36, 37syl2anc 584 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
39 elfzoelz 13628 . . . . 5 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℤ)
4039zcnd 12663 . . . 4 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℂ)
4119adantr 481 . . . . 5 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℂ)
42413ad2ant2 1134 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ ℂ)
43 npcan 11465 . . . 4 ((𝑋 ∈ ℂ ∧ 𝐹 ∈ ℂ) → ((𝑋𝐹) + 𝐹) = 𝑋)
4440, 42, 43syl2anr 597 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑋𝐹) + 𝐹) = 𝑋)
4544fveq2d 6892 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆‘((𝑋𝐹) + 𝐹)) = (𝑆𝑋))
4638, 45eqtrd 2772 1 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4633   class class class wbr 5147  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106   + caddc 11109  cle 11245  cmin 11440  0cn0 12468  cz 12554  cuz 12818  ...cfz 13480  ..^cfzo 13623  chash 14286  Word cword 14460   substr csubstr 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-substr 14587
This theorem is referenced by:  swrdspsleq  14611
  Copyright terms: Public domain W3C validator