MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdfv2 Structured version   Visualization version   GIF version

Theorem swrdfv2 14569
Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.)
Assertion
Ref Expression
swrdfv2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))

Proof of Theorem swrdfv2
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝑆 ∈ Word 𝑉)
2 simpl 482 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℕ0)
3 eluznn0 12815 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℕ0)
4 eluzle 12745 . . . . . . . . 9 (𝐿 ∈ (ℤ𝐹) → 𝐹𝐿)
54adantl 481 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹𝐿)
62, 3, 53jca 1128 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
763ad2ant2 1134 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
8 elfz2nn0 13518 . . . . . 6 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
97, 8sylibr 234 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ (0...𝐿))
103anim1i 615 . . . . . . 7 (((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
11103adant1 1130 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
12 lencl 14440 . . . . . . . 8 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
13123ad2ant1 1133 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (♯‘𝑆) ∈ ℕ0)
14 fznn0 13519 . . . . . . 7 ((♯‘𝑆) ∈ ℕ0 → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1513, 14syl 17 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1611, 15mpbird 257 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 ∈ (0...(♯‘𝑆)))
171, 9, 163jca 1128 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
1817adantr 480 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
19 nn0cn 12391 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℂ)
20 eluzelcn 12744 . . . . . . . . . 10 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℂ)
21 pncan3 11368 . . . . . . . . . 10 ((𝐹 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐹 + (𝐿𝐹)) = 𝐿)
2219, 20, 21syl2an 596 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 + (𝐿𝐹)) = 𝐿)
2322eqcomd 2737 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 = (𝐹 + (𝐿𝐹)))
24233ad2ant2 1134 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 = (𝐹 + (𝐿𝐹)))
2524oveq2d 7362 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹..^𝐿) = (𝐹..^(𝐹 + (𝐿𝐹))))
2625eleq2d 2817 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑋 ∈ (𝐹..^𝐿) ↔ 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹)))))
2726biimpa 476 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))))
28 eluzelz 12742 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℤ)
2928adantl 481 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℤ)
30 nn0z 12493 . . . . . . . 8 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
3130adantr 480 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℤ)
3229, 31zsubcld 12582 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐿𝐹) ∈ ℤ)
33323ad2ant2 1134 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿𝐹) ∈ ℤ)
3433adantr 480 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝐿𝐹) ∈ ℤ)
35 fzosubel3 13626 . . . 4 ((𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))) ∧ (𝐿𝐹) ∈ ℤ) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
3627, 34, 35syl2anc 584 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
37 swrdfv 14556 . . 3 (((𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ (𝑋𝐹) ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
3818, 36, 37syl2anc 584 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
39 elfzoelz 13559 . . . . 5 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℤ)
4039zcnd 12578 . . . 4 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℂ)
4119adantr 480 . . . . 5 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℂ)
42413ad2ant2 1134 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ ℂ)
43 npcan 11369 . . . 4 ((𝑋 ∈ ℂ ∧ 𝐹 ∈ ℂ) → ((𝑋𝐹) + 𝐹) = 𝑋)
4440, 42, 43syl2anr 597 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑋𝐹) + 𝐹) = 𝑋)
4544fveq2d 6826 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆‘((𝑋𝐹) + 𝐹)) = (𝑆𝑋))
4638, 45eqtrd 2766 1 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   + caddc 11009  cle 11147  cmin 11344  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420   substr csubstr 14548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-substr 14549
This theorem is referenced by:  swrdspsleq  14573
  Copyright terms: Public domain W3C validator