MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdfv2 Structured version   Visualization version   GIF version

Theorem swrdfv2 14699
Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.)
Assertion
Ref Expression
swrdfv2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))

Proof of Theorem swrdfv2
StepHypRef Expression
1 simp1 1137 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝑆 ∈ Word 𝑉)
2 simpl 482 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℕ0)
3 eluznn0 12959 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℕ0)
4 eluzle 12891 . . . . . . . . 9 (𝐿 ∈ (ℤ𝐹) → 𝐹𝐿)
54adantl 481 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹𝐿)
62, 3, 53jca 1129 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
763ad2ant2 1135 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
8 elfz2nn0 13658 . . . . . 6 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
97, 8sylibr 234 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ (0...𝐿))
103anim1i 615 . . . . . . 7 (((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
11103adant1 1131 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
12 lencl 14571 . . . . . . . 8 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
13123ad2ant1 1134 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (♯‘𝑆) ∈ ℕ0)
14 fznn0 13659 . . . . . . 7 ((♯‘𝑆) ∈ ℕ0 → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1513, 14syl 17 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1611, 15mpbird 257 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 ∈ (0...(♯‘𝑆)))
171, 9, 163jca 1129 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
1817adantr 480 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
19 nn0cn 12536 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℂ)
20 eluzelcn 12890 . . . . . . . . . 10 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℂ)
21 pncan3 11516 . . . . . . . . . 10 ((𝐹 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐹 + (𝐿𝐹)) = 𝐿)
2219, 20, 21syl2an 596 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 + (𝐿𝐹)) = 𝐿)
2322eqcomd 2743 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 = (𝐹 + (𝐿𝐹)))
24233ad2ant2 1135 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 = (𝐹 + (𝐿𝐹)))
2524oveq2d 7447 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹..^𝐿) = (𝐹..^(𝐹 + (𝐿𝐹))))
2625eleq2d 2827 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑋 ∈ (𝐹..^𝐿) ↔ 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹)))))
2726biimpa 476 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))))
28 eluzelz 12888 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℤ)
2928adantl 481 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℤ)
30 nn0z 12638 . . . . . . . 8 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
3130adantr 480 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℤ)
3229, 31zsubcld 12727 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐿𝐹) ∈ ℤ)
33323ad2ant2 1135 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿𝐹) ∈ ℤ)
3433adantr 480 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝐿𝐹) ∈ ℤ)
35 fzosubel3 13765 . . . 4 ((𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))) ∧ (𝐿𝐹) ∈ ℤ) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
3627, 34, 35syl2anc 584 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
37 swrdfv 14686 . . 3 (((𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ (𝑋𝐹) ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
3818, 36, 37syl2anc 584 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
39 elfzoelz 13699 . . . . 5 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℤ)
4039zcnd 12723 . . . 4 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℂ)
4119adantr 480 . . . . 5 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℂ)
42413ad2ant2 1135 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ ℂ)
43 npcan 11517 . . . 4 ((𝑋 ∈ ℂ ∧ 𝐹 ∈ ℂ) → ((𝑋𝐹) + 𝐹) = 𝑋)
4440, 42, 43syl2anr 597 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑋𝐹) + 𝐹) = 𝑋)
4544fveq2d 6910 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆‘((𝑋𝐹) + 𝐹)) = (𝑆𝑋))
4638, 45eqtrd 2777 1 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155   + caddc 11158  cle 11296  cmin 11492  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   substr csubstr 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-substr 14679
This theorem is referenced by:  swrdspsleq  14703
  Copyright terms: Public domain W3C validator