MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdfv2 Structured version   Visualization version   GIF version

Theorem swrdfv2 14014
Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.)
Assertion
Ref Expression
swrdfv2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))

Proof of Theorem swrdfv2
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝑆 ∈ Word 𝑉)
2 simpl 486 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℕ0)
3 eluznn0 12305 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℕ0)
4 eluzle 12244 . . . . . . . . 9 (𝐿 ∈ (ℤ𝐹) → 𝐹𝐿)
54adantl 485 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹𝐿)
62, 3, 53jca 1125 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
763ad2ant2 1131 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
8 elfz2nn0 12993 . . . . . 6 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
97, 8sylibr 237 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ (0...𝐿))
103anim1i 617 . . . . . . 7 (((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
11103adant1 1127 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
12 lencl 13876 . . . . . . . 8 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
13123ad2ant1 1130 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (♯‘𝑆) ∈ ℕ0)
14 fznn0 12994 . . . . . . 7 ((♯‘𝑆) ∈ ℕ0 → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1513, 14syl 17 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (♯‘𝑆))))
1611, 15mpbird 260 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 ∈ (0...(♯‘𝑆)))
171, 9, 163jca 1125 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
1817adantr 484 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
19 nn0cn 11895 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℂ)
20 eluzelcn 12243 . . . . . . . . . 10 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℂ)
21 pncan3 10883 . . . . . . . . . 10 ((𝐹 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐹 + (𝐿𝐹)) = 𝐿)
2219, 20, 21syl2an 598 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 + (𝐿𝐹)) = 𝐿)
2322eqcomd 2804 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 = (𝐹 + (𝐿𝐹)))
24233ad2ant2 1131 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐿 = (𝐹 + (𝐿𝐹)))
2524oveq2d 7151 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐹..^𝐿) = (𝐹..^(𝐹 + (𝐿𝐹))))
2625eleq2d 2875 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝑋 ∈ (𝐹..^𝐿) ↔ 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹)))))
2726biimpa 480 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))))
28 eluzelz 12241 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℤ)
2928adantl 485 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℤ)
30 nn0z 11993 . . . . . . . 8 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
3130adantr 484 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℤ)
3229, 31zsubcld 12080 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐿𝐹) ∈ ℤ)
33323ad2ant2 1131 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (𝐿𝐹) ∈ ℤ)
3433adantr 484 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝐿𝐹) ∈ ℤ)
35 fzosubel3 13093 . . . 4 ((𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))) ∧ (𝐿𝐹) ∈ ℤ) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
3627, 34, 35syl2anc 587 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
37 swrdfv 14001 . . 3 (((𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ (𝑋𝐹) ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
3818, 36, 37syl2anc 587 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
39 elfzoelz 13033 . . . . 5 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℤ)
4039zcnd 12076 . . . 4 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℂ)
4119adantr 484 . . . . 5 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℂ)
42413ad2ant2 1131 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → 𝐹 ∈ ℂ)
43 npcan 10884 . . . 4 ((𝑋 ∈ ℂ ∧ 𝐹 ∈ ℂ) → ((𝑋𝐹) + 𝐹) = 𝑋)
4440, 42, 43syl2anr 599 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑋𝐹) + 𝐹) = 𝑋)
4544fveq2d 6649 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆‘((𝑋𝐹) + 𝐹)) = (𝑆𝑋))
4638, 45eqtrd 2833 1 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   + caddc 10529  cle 10665  cmin 10859  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   substr csubstr 13993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-substr 13994
This theorem is referenced by:  swrdspsleq  14018
  Copyright terms: Public domain W3C validator