| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expnegico01 | Structured version Visualization version GIF version | ||
| Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| expnegico01 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 12868 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ) |
| 3 | eluz2nn 12903 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
| 4 | 3 | nnne0d 12295 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ≠ 0) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 7 | 2, 5, 6 | 3jca 1128 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 9 | reexpclz 14105 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ∈ ℝ) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
| 11 | 0red 11243 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ) | |
| 12 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ) |
| 13 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0) |
| 14 | simp2 1137 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ) | |
| 15 | 12, 13, 14 | reexpclzd 14272 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
| 16 | 3 | nngt0d 12294 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 0 < 𝐵) |
| 17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵) |
| 18 | expgt0 14118 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑁)) | |
| 19 | 12, 14, 17, 18 | syl3anc 1373 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵↑𝑁)) |
| 20 | 11, 15, 19 | ltled 11388 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵↑𝑁)) |
| 21 | 0zd 12605 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ) | |
| 22 | eluz2gt1 12941 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
| 23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵) |
| 24 | simp3 1138 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0) | |
| 25 | ltexp2a 14189 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵 ∧ 𝑁 < 0)) → (𝐵↑𝑁) < (𝐵↑0)) | |
| 26 | 12, 14, 21, 23, 24, 25 | syl32anc 1380 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < (𝐵↑0)) |
| 27 | eluzelcn 12869 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
| 28 | 27 | exp0d 14163 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
| 29 | 28 | eqcomd 2742 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
| 30 | 29 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0)) |
| 31 | 26, 30 | breqtrrd 5152 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < 1) |
| 32 | 0re 11242 | . . . 4 ⊢ 0 ∈ ℝ | |
| 33 | 1xr 11299 | . . . 4 ⊢ 1 ∈ ℝ* | |
| 34 | 32, 33 | pm3.2i 470 | . . 3 ⊢ (0 ∈ ℝ ∧ 1 ∈ ℝ*) |
| 35 | elico2 13432 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) | |
| 36 | 34, 35 | mp1i 13 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) |
| 37 | 10, 20, 31, 36 | mpbir3and 1343 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 2c2 12300 ℤcz 12593 ℤ≥cuz 12857 [,)cico 13369 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: digexp 48554 |
| Copyright terms: Public domain | W3C validator |