Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expnegico01 Structured version   Visualization version   GIF version

Theorem expnegico01 48550
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
expnegico01 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))

Proof of Theorem expnegico01
StepHypRef Expression
1 eluzelre 12738 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
21adantr 480 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ)
3 eluz2nn 12781 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
43nnne0d 12170 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
54adantr 480 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0)
6 simpr 484 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
72, 5, 63jca 1128 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
873adant3 1132 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
9 reexpclz 13984 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵𝑁) ∈ ℝ)
108, 9syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
11 0red 11110 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ)
1213ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ)
1343ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0)
14 simp2 1137 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
1512, 13, 14reexpclzd 14151 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
163nngt0d 12169 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
17163ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵)
18 expgt0 13997 . . . 4 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑁))
1912, 14, 17, 18syl3anc 1373 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵𝑁))
2011, 15, 19ltled 11256 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵𝑁))
21 0zd 12475 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ)
22 eluz2gt1 12813 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
23223ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵)
24 simp3 1138 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0)
25 ltexp2a 14068 . . . 4 (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵𝑁 < 0)) → (𝐵𝑁) < (𝐵↑0))
2612, 14, 21, 23, 24, 25syl32anc 1380 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < (𝐵↑0))
27 eluzelcn 12739 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2827exp0d 14042 . . . . 5 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
2928eqcomd 2737 . . . 4 (𝐵 ∈ (ℤ‘2) → 1 = (𝐵↑0))
30293ad2ant1 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0))
3126, 30breqtrrd 5114 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < 1)
32 0re 11109 . . . 4 0 ∈ ℝ
33 1xr 11166 . . . 4 1 ∈ ℝ*
3432, 33pm3.2i 470 . . 3 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
35 elico2 13305 . . 3 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3634, 35mp1i 13 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3710, 20, 31, 36mpbir3and 1343 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002  *cxr 11140   < clt 11141  cle 11142  2c2 12175  cz 12463  cuz 12727  [,)cico 13242  cexp 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-seq 13904  df-exp 13964
This theorem is referenced by:  digexp  48639
  Copyright terms: Public domain W3C validator