![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > expnegico01 | Structured version Visualization version GIF version |
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
expnegico01 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12829 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ) |
3 | eluz2nn 12864 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
4 | 3 | nnne0d 12258 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ≠ 0) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0) |
6 | simpr 485 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | 2, 5, 6 | 3jca 1128 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
9 | reexpclz 14044 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
11 | 0red 11213 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ) | |
12 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ) |
13 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0) |
14 | simp2 1137 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ) | |
15 | 12, 13, 14 | reexpclzd 14208 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
16 | 3 | nngt0d 12257 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 0 < 𝐵) |
17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵) |
18 | expgt0 14057 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑁)) | |
19 | 12, 14, 17, 18 | syl3anc 1371 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵↑𝑁)) |
20 | 11, 15, 19 | ltled 11358 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵↑𝑁)) |
21 | 0zd 12566 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ) | |
22 | eluz2gt1 12900 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵) |
24 | simp3 1138 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0) | |
25 | ltexp2a 14127 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵 ∧ 𝑁 < 0)) → (𝐵↑𝑁) < (𝐵↑0)) | |
26 | 12, 14, 21, 23, 24, 25 | syl32anc 1378 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < (𝐵↑0)) |
27 | eluzelcn 12830 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
28 | 27 | exp0d 14101 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
29 | 28 | eqcomd 2738 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
30 | 29 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0)) |
31 | 26, 30 | breqtrrd 5175 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < 1) |
32 | 0re 11212 | . . . 4 ⊢ 0 ∈ ℝ | |
33 | 1xr 11269 | . . . 4 ⊢ 1 ∈ ℝ* | |
34 | 32, 33 | pm3.2i 471 | . . 3 ⊢ (0 ∈ ℝ ∧ 1 ∈ ℝ*) |
35 | elico2 13384 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) | |
36 | 34, 35 | mp1i 13 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) |
37 | 10, 20, 31, 36 | mpbir3and 1342 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 0cc0 11106 1c1 11107 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 2c2 12263 ℤcz 12554 ℤ≥cuz 12818 [,)cico 13322 ↑cexp 14023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-seq 13963 df-exp 14024 |
This theorem is referenced by: digexp 47246 |
Copyright terms: Public domain | W3C validator |