Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expnegico01 Structured version   Visualization version   GIF version

Theorem expnegico01 44927
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
expnegico01 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))

Proof of Theorem expnegico01
StepHypRef Expression
1 eluzelre 12242 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
21adantr 484 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ)
3 eluz2nn 12272 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
43nnne0d 11675 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
54adantr 484 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0)
6 simpr 488 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
72, 5, 63jca 1125 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
873adant3 1129 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
9 reexpclz 13445 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵𝑁) ∈ ℝ)
108, 9syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
11 0red 10633 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ)
1213ad2ant1 1130 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ)
1343ad2ant1 1130 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0)
14 simp2 1134 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
1512, 13, 14reexpclzd 13606 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
163nngt0d 11674 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
17163ad2ant1 1130 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵)
18 expgt0 13458 . . . 4 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑁))
1912, 14, 17, 18syl3anc 1368 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵𝑁))
2011, 15, 19ltled 10777 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵𝑁))
21 0zd 11981 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ)
22 eluz2gt1 12308 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
23223ad2ant1 1130 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵)
24 simp3 1135 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0)
25 ltexp2a 13526 . . . 4 (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵𝑁 < 0)) → (𝐵𝑁) < (𝐵↑0))
2612, 14, 21, 23, 24, 25syl32anc 1375 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < (𝐵↑0))
27 eluzelcn 12243 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2827exp0d 13500 . . . . 5 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
2928eqcomd 2804 . . . 4 (𝐵 ∈ (ℤ‘2) → 1 = (𝐵↑0))
30293ad2ant1 1130 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0))
3126, 30breqtrrd 5058 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < 1)
32 0re 10632 . . . 4 0 ∈ ℝ
33 1xr 10689 . . . 4 1 ∈ ℝ*
3432, 33pm3.2i 474 . . 3 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
35 elico2 12789 . . 3 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3634, 35mp1i 13 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3710, 20, 31, 36mpbir3and 1339 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527  *cxr 10663   < clt 10664  cle 10665  2c2 11680  cz 11969  cuz 12231  [,)cico 12728  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-seq 13365  df-exp 13426
This theorem is referenced by:  digexp  45021
  Copyright terms: Public domain W3C validator