Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expnegico01 Structured version   Visualization version   GIF version

Theorem expnegico01 48523
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
expnegico01 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))

Proof of Theorem expnegico01
StepHypRef Expression
1 eluzelre 12765 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
21adantr 480 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ)
3 eluz2nn 12808 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
43nnne0d 12197 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
54adantr 480 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0)
6 simpr 484 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
72, 5, 63jca 1128 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
873adant3 1132 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ))
9 reexpclz 14008 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵𝑁) ∈ ℝ)
108, 9syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
11 0red 11137 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ)
1213ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ)
1343ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0)
14 simp2 1137 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
1512, 13, 14reexpclzd 14175 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ ℝ)
163nngt0d 12196 . . . . 5 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
17163ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵)
18 expgt0 14021 . . . 4 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑁))
1912, 14, 17, 18syl3anc 1373 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵𝑁))
2011, 15, 19ltled 11283 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵𝑁))
21 0zd 12502 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ)
22 eluz2gt1 12840 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
23223ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵)
24 simp3 1138 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0)
25 ltexp2a 14092 . . . 4 (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵𝑁 < 0)) → (𝐵𝑁) < (𝐵↑0))
2612, 14, 21, 23, 24, 25syl32anc 1380 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < (𝐵↑0))
27 eluzelcn 12766 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2827exp0d 14066 . . . . 5 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
2928eqcomd 2735 . . . 4 (𝐵 ∈ (ℤ‘2) → 1 = (𝐵↑0))
30293ad2ant1 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0))
3126, 30breqtrrd 5123 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) < 1)
32 0re 11136 . . . 4 0 ∈ ℝ
33 1xr 11193 . . . 4 1 ∈ ℝ*
3432, 33pm3.2i 470 . . 3 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
35 elico2 13332 . . 3 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3634, 35mp1i 13 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵𝑁) ∈ (0[,)1) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁) ∧ (𝐵𝑁) < 1)))
3710, 20, 31, 36mpbir3and 1343 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029  *cxr 11167   < clt 11168  cle 11169  2c2 12202  cz 12490  cuz 12754  [,)cico 13269  cexp 13987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-ico 13273  df-seq 13928  df-exp 13988
This theorem is referenced by:  digexp  48612
  Copyright terms: Public domain W3C validator