![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > expnegico01 | Structured version Visualization version GIF version |
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
expnegico01 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12774 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ) |
3 | eluz2nn 12809 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
4 | 3 | nnne0d 12203 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ≠ 0) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0) |
6 | simpr 485 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | 2, 5, 6 | 3jca 1128 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
9 | reexpclz 13988 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
11 | 0red 11158 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ) | |
12 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ) |
13 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0) |
14 | simp2 1137 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ) | |
15 | 12, 13, 14 | reexpclzd 14152 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
16 | 3 | nngt0d 12202 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 0 < 𝐵) |
17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵) |
18 | expgt0 14001 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑁)) | |
19 | 12, 14, 17, 18 | syl3anc 1371 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵↑𝑁)) |
20 | 11, 15, 19 | ltled 11303 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵↑𝑁)) |
21 | 0zd 12511 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ) | |
22 | eluz2gt1 12845 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵) |
24 | simp3 1138 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0) | |
25 | ltexp2a 14071 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵 ∧ 𝑁 < 0)) → (𝐵↑𝑁) < (𝐵↑0)) | |
26 | 12, 14, 21, 23, 24, 25 | syl32anc 1378 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < (𝐵↑0)) |
27 | eluzelcn 12775 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
28 | 27 | exp0d 14045 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
29 | 28 | eqcomd 2742 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
30 | 29 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0)) |
31 | 26, 30 | breqtrrd 5133 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < 1) |
32 | 0re 11157 | . . . 4 ⊢ 0 ∈ ℝ | |
33 | 1xr 11214 | . . . 4 ⊢ 1 ∈ ℝ* | |
34 | 32, 33 | pm3.2i 471 | . . 3 ⊢ (0 ∈ ℝ ∧ 1 ∈ ℝ*) |
35 | elico2 13328 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) | |
36 | 34, 35 | mp1i 13 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) |
37 | 10, 20, 31, 36 | mpbir3and 1342 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 0cc0 11051 1c1 11052 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 2c2 12208 ℤcz 12499 ℤ≥cuz 12763 [,)cico 13266 ↑cexp 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-ico 13270 df-seq 13907 df-exp 13968 |
This theorem is referenced by: digexp 46683 |
Copyright terms: Public domain | W3C validator |