Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > expnegico01 | Structured version Visualization version GIF version |
Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
expnegico01 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12306 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 484 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ∈ ℝ) |
3 | eluz2nn 12337 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℕ) | |
4 | 3 | nnne0d 11737 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ≠ 0) |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐵 ≠ 0) |
6 | simpr 488 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | 2, 5, 6 | 3jca 1125 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
8 | 7 | 3adant3 1129 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
9 | reexpclz 13512 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐵↑𝑁) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
11 | 0red 10695 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℝ) | |
12 | 1 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ∈ ℝ) |
13 | 4 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝐵 ≠ 0) |
14 | simp2 1134 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 ∈ ℤ) | |
15 | 12, 13, 14 | reexpclzd 13673 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ ℝ) |
16 | 3 | nngt0d 11736 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 0 < 𝐵) |
17 | 16 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < 𝐵) |
18 | expgt0 13525 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵↑𝑁)) | |
19 | 12, 14, 17, 18 | syl3anc 1368 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 < (𝐵↑𝑁)) |
20 | 11, 15, 19 | ltled 10839 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ≤ (𝐵↑𝑁)) |
21 | 0zd 12045 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 0 ∈ ℤ) | |
22 | eluz2gt1 12373 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
23 | 22 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 < 𝐵) |
24 | simp3 1135 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 𝑁 < 0) | |
25 | ltexp2a 13593 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 < 𝐵 ∧ 𝑁 < 0)) → (𝐵↑𝑁) < (𝐵↑0)) | |
26 | 12, 14, 21, 23, 24, 25 | syl32anc 1375 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < (𝐵↑0)) |
27 | eluzelcn 12307 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℂ) | |
28 | 27 | exp0d 13567 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵↑0) = 1) |
29 | 28 | eqcomd 2764 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 = (𝐵↑0)) |
30 | 29 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → 1 = (𝐵↑0)) |
31 | 26, 30 | breqtrrd 5064 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) < 1) |
32 | 0re 10694 | . . . 4 ⊢ 0 ∈ ℝ | |
33 | 1xr 10751 | . . . 4 ⊢ 1 ∈ ℝ* | |
34 | 32, 33 | pm3.2i 474 | . . 3 ⊢ (0 ∈ ℝ ∧ 1 ∈ ℝ*) |
35 | elico2 12856 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) | |
36 | 34, 35 | mp1i 13 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → ((𝐵↑𝑁) ∈ (0[,)1) ↔ ((𝐵↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐵↑𝑁) ∧ (𝐵↑𝑁) < 1))) |
37 | 10, 20, 31, 36 | mpbir3and 1339 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 ℝcr 10587 0cc0 10588 1c1 10589 ℝ*cxr 10725 < clt 10726 ≤ cle 10727 2c2 11742 ℤcz 12033 ℤ≥cuz 12295 [,)cico 12794 ↑cexp 13492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-ico 12798 df-seq 13432 df-exp 13493 |
This theorem is referenced by: digexp 45435 |
Copyright terms: Public domain | W3C validator |