MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendship Structured version   Visualization version   GIF version

Theorem friendship 30380
Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.)
Hypothesis
Ref Expression
friendship.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
friendship ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺,𝑤   𝑣,𝑉,𝑤

Proof of Theorem friendship
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
2 simpr3 1197 . . . 4 ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
3 simpl 482 . . . 4 ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (♯‘𝑉))
4 friendship.v . . . . 5 𝑉 = (Vtx‘𝐺)
54friendshipgt3 30379 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
61, 2, 3, 5syl3anc 1373 . . 3 ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
76ex 412 . 2 (3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
8 hashcl 14300 . . . . . . . . 9 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
9 simplr 768 . . . . . . . . . . 11 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin)
10 hashge1 14333 . . . . . . . . . . . 12 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉))
1110ad2ant2l 746 . . . . . . . . . . 11 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (♯‘𝑉))
12 nn0re 12430 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
13 3re 12245 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
14 lenlt 11231 . . . . . . . . . . . . . . . . 17 (((♯‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉)))
1512, 13, 14sylancl 586 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉)))
1615biimprd 248 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℕ0 → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3))
1716adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3))
1817com12 32 . . . . . . . . . . . . 13 (¬ 3 < (♯‘𝑉) → (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3))
1918adantr 480 . . . . . . . . . . . 12 ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3))
2019impcom 407 . . . . . . . . . . 11 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (♯‘𝑉) ≤ 3)
219, 11, 203jca 1128 . . . . . . . . . 10 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3))
2221exp31 419 . . . . . . . . 9 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3))))
238, 22mpcom 38 . . . . . . . 8 (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)))
2423impcom 407 . . . . . . 7 (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3))
25 hash1to3 14436 . . . . . . 7 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
26 vex 3448 . . . . . . . . . 10 𝑎 ∈ V
27 eqid 2729 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
284, 271to3vfriendship 30262 . . . . . . . . . 10 ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
2926, 28mpan 690 . . . . . . . . 9 ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3029exlimiv 1930 . . . . . . . 8 (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3130exlimivv 1932 . . . . . . 7 (∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3224, 25, 313syl 18 . . . . . 6 (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3332exp31 419 . . . . 5 (¬ 3 < (♯‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
3433com14 96 . . . 4 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (♯‘𝑉) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
35343imp 1110 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635com12 32 . 2 (¬ 3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
377, 36pm2.61i 182 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  c0 4292  {csn 4585  {cpr 4587  {ctp 4589   class class class wbr 5102  cfv 6500  Fincfn 8896  cr 11046  1c1 11048   < clt 11187  cle 11188  3c3 12221  0cn0 12421  chash 14274  Vtxcvtx 28978  Edgcedg 29029   FriendGraph cfrgr 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-inf2 9573  ax-ac2 10395  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-3o 8414  df-oadd 8416  df-er 8649  df-ec 8651  df-qs 8655  df-map 8779  df-pm 8780  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-sup 9370  df-inf 9371  df-oi 9440  df-dju 9833  df-card 9871  df-ac 10048  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-n0 12422  df-xnn0 12495  df-z 12509  df-uz 12773  df-rp 12931  df-xadd 13052  df-ico 13291  df-fz 13448  df-fzo 13595  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-hash 14275  df-word 14458  df-lsw 14507  df-concat 14515  df-s1 14540  df-substr 14585  df-pfx 14615  df-reps 14712  df-csh 14732  df-s2 14792  df-s3 14793  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15432  df-sum 15631  df-dvds 16201  df-gcd 16443  df-prm 16620  df-phi 16714  df-vtx 28980  df-iedg 28981  df-edg 29030  df-uhgr 29040  df-ushgr 29041  df-upgr 29064  df-umgr 29065  df-uspgr 29132  df-usgr 29133  df-fusgr 29299  df-nbgr 29315  df-vtxdg 29449  df-rgr 29540  df-rusgr 29541  df-wlks 29582  df-wlkson 29583  df-trls 29673  df-trlson 29674  df-pths 29696  df-spths 29697  df-pthson 29698  df-spthson 29699  df-wwlks 29812  df-wwlksn 29813  df-wwlksnon 29814  df-wspthsn 29815  df-wspthsnon 29816  df-clwwlk 29963  df-clwwlkn 30006  df-clwwlknon 30069  df-conngr 30168  df-frgr 30240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator