| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > friendship | Structured version Visualization version GIF version | ||
| Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.) |
| Ref | Expression |
|---|---|
| friendship.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| friendship | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph ) | |
| 2 | simpr3 1197 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin) | |
| 3 | simpl 482 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (♯‘𝑉)) | |
| 4 | friendship.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 4 | friendshipgt3 30334 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | . . 3 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| 7 | 6 | ex 412 | . 2 ⊢ (3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 8 | hashcl 14328 | . . . . . . . . 9 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
| 9 | simplr 768 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin) | |
| 10 | hashge1 14361 | . . . . . . . . . . . 12 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
| 11 | 10 | ad2ant2l 746 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (♯‘𝑉)) |
| 12 | nn0re 12458 | . . . . . . . . . . . . . . . . 17 ⊢ ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ) | |
| 13 | 3re 12273 | . . . . . . . . . . . . . . . . 17 ⊢ 3 ∈ ℝ | |
| 14 | lenlt 11259 | . . . . . . . . . . . . . . . . 17 ⊢ (((♯‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) | |
| 15 | 12, 13, 14 | sylancl 586 | . . . . . . . . . . . . . . . 16 ⊢ ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) |
| 16 | 15 | biimprd 248 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝑉) ∈ ℕ0 → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
| 17 | 16 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
| 18 | 17 | com12 32 | . . . . . . . . . . . . 13 ⊢ (¬ 3 < (♯‘𝑉) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
| 19 | 18 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
| 20 | 19 | impcom 407 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (♯‘𝑉) ≤ 3) |
| 21 | 9, 11, 20 | 3jca 1128 | . . . . . . . . . 10 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
| 22 | 21 | exp31 419 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)))) |
| 23 | 8, 22 | mpcom 38 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3))) |
| 24 | 23 | impcom 407 | . . . . . . 7 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
| 25 | hash1to3 14464 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
| 26 | vex 3454 | . . . . . . . . . 10 ⊢ 𝑎 ∈ V | |
| 27 | eqid 2730 | . . . . . . . . . . 11 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 28 | 4, 27 | 1to3vfriendship 30217 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 29 | 26, 28 | mpan 690 | . . . . . . . . 9 ⊢ ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 30 | 29 | exlimiv 1930 | . . . . . . . 8 ⊢ (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 31 | 30 | exlimivv 1932 | . . . . . . 7 ⊢ (∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 32 | 24, 25, 31 | 3syl 18 | . . . . . 6 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 33 | 32 | exp31 419 | . . . . 5 ⊢ (¬ 3 < (♯‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
| 34 | 33 | com14 96 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
| 35 | 34 | 3imp 1110 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 36 | 35 | com12 32 | . 2 ⊢ (¬ 3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 37 | 7, 36 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 ∅c0 4299 {csn 4592 {cpr 4594 {ctp 4596 class class class wbr 5110 ‘cfv 6514 Fincfn 8921 ℝcr 11074 1c1 11076 < clt 11215 ≤ cle 11216 3c3 12249 ℕ0cn0 12449 ♯chash 14302 Vtxcvtx 28930 Edgcedg 28981 FriendGraph cfrgr 30194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-3o 8439 df-oadd 8441 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-rp 12959 df-xadd 13080 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-reps 14741 df-csh 14761 df-s2 14821 df-s3 14822 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-dvds 16230 df-gcd 16472 df-prm 16649 df-phi 16743 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-ushgr 28993 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-fusgr 29251 df-nbgr 29267 df-vtxdg 29401 df-rgr 29492 df-rusgr 29493 df-wlks 29534 df-wlkson 29535 df-trls 29627 df-trlson 29628 df-pths 29651 df-spths 29652 df-pthson 29653 df-spthson 29654 df-wwlks 29767 df-wwlksn 29768 df-wwlksnon 29769 df-wspthsn 29770 df-wspthsnon 29771 df-clwwlk 29918 df-clwwlkn 29961 df-clwwlknon 30024 df-conngr 30123 df-frgr 30195 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |