![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > friendship | Structured version Visualization version GIF version |
Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.) |
Ref | Expression |
---|---|
friendship.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
friendship | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1193 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph ) | |
2 | simpr3 1195 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin) | |
3 | simpl 482 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (♯‘𝑉)) | |
4 | friendship.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | friendshipgt3 30427 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
6 | 1, 2, 3, 5 | syl3anc 1370 | . . 3 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
7 | 6 | ex 412 | . 2 ⊢ (3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
8 | hashcl 14392 | . . . . . . . . 9 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
9 | simplr 769 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin) | |
10 | hashge1 14425 | . . . . . . . . . . . 12 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
11 | 10 | ad2ant2l 746 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (♯‘𝑉)) |
12 | nn0re 12533 | . . . . . . . . . . . . . . . . 17 ⊢ ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ) | |
13 | 3re 12344 | . . . . . . . . . . . . . . . . 17 ⊢ 3 ∈ ℝ | |
14 | lenlt 11337 | . . . . . . . . . . . . . . . . 17 ⊢ (((♯‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) | |
15 | 12, 13, 14 | sylancl 586 | . . . . . . . . . . . . . . . 16 ⊢ ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) |
16 | 15 | biimprd 248 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝑉) ∈ ℕ0 → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
17 | 16 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
18 | 17 | com12 32 | . . . . . . . . . . . . 13 ⊢ (¬ 3 < (♯‘𝑉) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
19 | 18 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
20 | 19 | impcom 407 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (♯‘𝑉) ≤ 3) |
21 | 9, 11, 20 | 3jca 1127 | . . . . . . . . . 10 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
22 | 21 | exp31 419 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)))) |
23 | 8, 22 | mpcom 38 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3))) |
24 | 23 | impcom 407 | . . . . . . 7 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
25 | hash1to3 14528 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
26 | vex 3482 | . . . . . . . . . 10 ⊢ 𝑎 ∈ V | |
27 | eqid 2735 | . . . . . . . . . . 11 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
28 | 4, 27 | 1to3vfriendship 30310 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
29 | 26, 28 | mpan 690 | . . . . . . . . 9 ⊢ ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
30 | 29 | exlimiv 1928 | . . . . . . . 8 ⊢ (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
31 | 30 | exlimivv 1930 | . . . . . . 7 ⊢ (∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
32 | 24, 25, 31 | 3syl 18 | . . . . . 6 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
33 | 32 | exp31 419 | . . . . 5 ⊢ (¬ 3 < (♯‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
34 | 33 | com14 96 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
35 | 34 | 3imp 1110 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
36 | 35 | com12 32 | . 2 ⊢ (¬ 3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
37 | 7, 36 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ∖ cdif 3960 ∅c0 4339 {csn 4631 {cpr 4633 {ctp 4635 class class class wbr 5148 ‘cfv 6563 Fincfn 8984 ℝcr 11152 1c1 11154 < clt 11293 ≤ cle 11294 3c3 12320 ℕ0cn0 12524 ♯chash 14366 Vtxcvtx 29028 Edgcedg 29079 FriendGraph cfrgr 30287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-3o 8507 df-oadd 8509 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-xadd 13153 df-ico 13390 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-reps 14804 df-csh 14824 df-s2 14884 df-s3 14885 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-dvds 16288 df-gcd 16529 df-prm 16706 df-phi 16800 df-vtx 29030 df-iedg 29031 df-edg 29080 df-uhgr 29090 df-ushgr 29091 df-upgr 29114 df-umgr 29115 df-uspgr 29182 df-usgr 29183 df-fusgr 29349 df-nbgr 29365 df-vtxdg 29499 df-rgr 29590 df-rusgr 29591 df-wlks 29632 df-wlkson 29633 df-trls 29725 df-trlson 29726 df-pths 29749 df-spths 29750 df-pthson 29751 df-spthson 29752 df-wwlks 29860 df-wwlksn 29861 df-wwlksnon 29862 df-wspthsn 29863 df-wspthsnon 29864 df-clwwlk 30011 df-clwwlkn 30054 df-clwwlknon 30117 df-conngr 30216 df-frgr 30288 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |