| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > friendship | Structured version Visualization version GIF version | ||
| Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.) |
| Ref | Expression |
|---|---|
| friendship.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| friendship | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph ) | |
| 2 | simpr3 1197 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin) | |
| 3 | simpl 482 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (♯‘𝑉)) | |
| 4 | friendship.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 4 | friendshipgt3 30346 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | . . 3 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| 7 | 6 | ex 412 | . 2 ⊢ (3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 8 | hashcl 14263 | . . . . . . . . 9 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
| 9 | simplr 768 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin) | |
| 10 | hashge1 14296 | . . . . . . . . . . . 12 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
| 11 | 10 | ad2ant2l 746 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (♯‘𝑉)) |
| 12 | nn0re 12393 | . . . . . . . . . . . . . . . . 17 ⊢ ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ) | |
| 13 | 3re 12208 | . . . . . . . . . . . . . . . . 17 ⊢ 3 ∈ ℝ | |
| 14 | lenlt 11194 | . . . . . . . . . . . . . . . . 17 ⊢ (((♯‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) | |
| 15 | 12, 13, 14 | sylancl 586 | . . . . . . . . . . . . . . . 16 ⊢ ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) |
| 16 | 15 | biimprd 248 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝑉) ∈ ℕ0 → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
| 17 | 16 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
| 18 | 17 | com12 32 | . . . . . . . . . . . . 13 ⊢ (¬ 3 < (♯‘𝑉) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
| 19 | 18 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
| 20 | 19 | impcom 407 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (♯‘𝑉) ≤ 3) |
| 21 | 9, 11, 20 | 3jca 1128 | . . . . . . . . . 10 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
| 22 | 21 | exp31 419 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)))) |
| 23 | 8, 22 | mpcom 38 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3))) |
| 24 | 23 | impcom 407 | . . . . . . 7 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
| 25 | hash1to3 14399 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
| 26 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑎 ∈ V | |
| 27 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 28 | 4, 27 | 1to3vfriendship 30229 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 29 | 26, 28 | mpan 690 | . . . . . . . . 9 ⊢ ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 30 | 29 | exlimiv 1930 | . . . . . . . 8 ⊢ (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 31 | 30 | exlimivv 1932 | . . . . . . 7 ⊢ (∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 32 | 24, 25, 31 | 3syl 18 | . . . . . 6 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 33 | 32 | exp31 419 | . . . . 5 ⊢ (¬ 3 < (♯‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
| 34 | 33 | com14 96 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
| 35 | 34 | 3imp 1110 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 36 | 35 | com12 32 | . 2 ⊢ (¬ 3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
| 37 | 7, 36 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ∖ cdif 3900 ∅c0 4284 {csn 4577 {cpr 4579 {ctp 4581 class class class wbr 5092 ‘cfv 6482 Fincfn 8872 ℝcr 11008 1c1 11010 < clt 11149 ≤ cle 11150 3c3 12184 ℕ0cn0 12384 ♯chash 14237 Vtxcvtx 28945 Edgcedg 28996 FriendGraph cfrgr 30206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-3o 8390 df-oadd 8392 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-rp 12894 df-xadd 13015 df-ico 13254 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-reps 14675 df-csh 14695 df-s2 14755 df-s3 14756 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-dvds 16164 df-gcd 16406 df-prm 16583 df-phi 16677 df-vtx 28947 df-iedg 28948 df-edg 28997 df-uhgr 29007 df-ushgr 29008 df-upgr 29031 df-umgr 29032 df-uspgr 29099 df-usgr 29100 df-fusgr 29266 df-nbgr 29282 df-vtxdg 29416 df-rgr 29507 df-rusgr 29508 df-wlks 29549 df-wlkson 29550 df-trls 29640 df-trlson 29641 df-pths 29663 df-spths 29664 df-pthson 29665 df-spthson 29666 df-wwlks 29779 df-wwlksn 29780 df-wwlksnon 29781 df-wspthsn 29782 df-wspthsnon 29783 df-clwwlk 29930 df-clwwlkn 29973 df-clwwlknon 30036 df-conngr 30135 df-frgr 30207 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |