Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > friendship | Structured version Visualization version GIF version |
Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.) |
Ref | Expression |
---|---|
friendship.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
friendship | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1193 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph ) | |
2 | simpr3 1195 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin) | |
3 | simpl 483 | . . . 4 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (♯‘𝑉)) | |
4 | friendship.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | friendshipgt3 28762 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
6 | 1, 2, 3, 5 | syl3anc 1370 | . . 3 ⊢ ((3 < (♯‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
7 | 6 | ex 413 | . 2 ⊢ (3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
8 | hashcl 14071 | . . . . . . . . 9 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
9 | simplr 766 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin) | |
10 | hashge1 14104 | . . . . . . . . . . . 12 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (♯‘𝑉)) | |
11 | 10 | ad2ant2l 743 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (♯‘𝑉)) |
12 | nn0re 12242 | . . . . . . . . . . . . . . . . 17 ⊢ ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ) | |
13 | 3re 12053 | . . . . . . . . . . . . . . . . 17 ⊢ 3 ∈ ℝ | |
14 | lenlt 11053 | . . . . . . . . . . . . . . . . 17 ⊢ (((♯‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) | |
15 | 12, 13, 14 | sylancl 586 | . . . . . . . . . . . . . . . 16 ⊢ ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≤ 3 ↔ ¬ 3 < (♯‘𝑉))) |
16 | 15 | biimprd 247 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝑉) ∈ ℕ0 → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
17 | 16 | adantr 481 | . . . . . . . . . . . . . 14 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → (♯‘𝑉) ≤ 3)) |
18 | 17 | com12 32 | . . . . . . . . . . . . 13 ⊢ (¬ 3 < (♯‘𝑉) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
19 | 18 | adantr 481 | . . . . . . . . . . . 12 ⊢ ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ≤ 3)) |
20 | 19 | impcom 408 | . . . . . . . . . . 11 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (♯‘𝑉) ≤ 3) |
21 | 9, 11, 20 | 3jca 1127 | . . . . . . . . . 10 ⊢ ((((♯‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
22 | 21 | exp31 420 | . . . . . . . . 9 ⊢ ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)))) |
23 | 8, 22 | mpcom 38 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3))) |
24 | 23 | impcom 408 | . . . . . . 7 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3)) |
25 | hash1to3 14205 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
26 | vex 3436 | . . . . . . . . . 10 ⊢ 𝑎 ∈ V | |
27 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
28 | 4, 27 | 1to3vfriendship 28645 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
29 | 26, 28 | mpan 687 | . . . . . . . . 9 ⊢ ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
30 | 29 | exlimiv 1933 | . . . . . . . 8 ⊢ (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
31 | 30 | exlimivv 1935 | . . . . . . 7 ⊢ (∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
32 | 24, 25, 31 | 3syl 18 | . . . . . 6 ⊢ (((¬ 3 < (♯‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
33 | 32 | exp31 420 | . . . . 5 ⊢ (¬ 3 < (♯‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
34 | 33 | com14 96 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
35 | 34 | 3imp 1110 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (♯‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
36 | 35 | com12 32 | . 2 ⊢ (¬ 3 < (♯‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
37 | 7, 36 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 {csn 4561 {cpr 4563 {ctp 4565 class class class wbr 5074 ‘cfv 6433 Fincfn 8733 ℝcr 10870 1c1 10872 < clt 11009 ≤ cle 11010 3c3 12029 ℕ0cn0 12233 ♯chash 14044 Vtxcvtx 27366 Edgcedg 27417 FriendGraph cfrgr 28622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-3o 8299 df-oadd 8301 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-reps 14482 df-csh 14502 df-s2 14561 df-s3 14562 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-dvds 15964 df-gcd 16202 df-prm 16377 df-phi 16467 df-vtx 27368 df-iedg 27369 df-edg 27418 df-uhgr 27428 df-ushgr 27429 df-upgr 27452 df-umgr 27453 df-uspgr 27520 df-usgr 27521 df-fusgr 27684 df-nbgr 27700 df-vtxdg 27833 df-rgr 27924 df-rusgr 27925 df-wlks 27966 df-wlkson 27967 df-trls 28060 df-trlson 28061 df-pths 28084 df-spths 28085 df-pthson 28086 df-spthson 28087 df-wwlks 28195 df-wwlksn 28196 df-wwlksnon 28197 df-wspthsn 28198 df-wspthsnon 28199 df-clwwlk 28346 df-clwwlkn 28389 df-clwwlknon 28452 df-conngr 28551 df-frgr 28623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |