| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tngngpd | Structured version Visualization version GIF version | ||
| Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| tngngp.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tngngp.x | ⊢ 𝑋 = (Base‘𝐺) |
| tngngp.m | ⊢ − = (-g‘𝐺) |
| tngngp.z | ⊢ 0 = (0g‘𝐺) |
| tngngpd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| tngngpd.2 | ⊢ (𝜑 → 𝑁:𝑋⟶ℝ) |
| tngngpd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) |
| tngngpd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| Ref | Expression |
|---|---|
| tngngpd | ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | tngngpd.2 | . . . 4 ⊢ (𝜑 → 𝑁:𝑋⟶ℝ) | |
| 3 | tngngp.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | 3 | fvexi 6889 | . . . . 5 ⊢ 𝑋 ∈ V |
| 5 | reex 11218 | . . . . 5 ⊢ ℝ ∈ V | |
| 6 | fex2 7930 | . . . . 5 ⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V) | |
| 7 | 4, 5, 6 | mp3an23 1455 | . . . 4 ⊢ (𝑁:𝑋⟶ℝ → 𝑁 ∈ V) |
| 8 | tngngp.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 9 | tngngp.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
| 10 | 8, 9 | tngds 24585 | . . . 4 ⊢ (𝑁 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 11 | 2, 7, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 12 | tngngp.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 13 | tngngpd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
| 14 | tngngpd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
| 15 | 3, 9, 12, 1, 2, 13, 14 | nrmmetd 24511 | . . 3 ⊢ (𝜑 → (𝑁 ∘ − ) ∈ (Met‘𝑋)) |
| 16 | 11, 15 | eqeltrrd 2835 | . 2 ⊢ (𝜑 → (dist‘𝑇) ∈ (Met‘𝑋)) |
| 17 | eqid 2735 | . . . 4 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
| 18 | 8, 3, 17 | tngngp2 24589 | . . 3 ⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋)))) |
| 19 | 2, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋)))) |
| 20 | 1, 16, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 + caddc 11130 ≤ cle 11268 Basecbs 17226 distcds 17278 0gc0g 17451 Grpcgrp 18914 -gcsg 18916 Metcmet 21299 NrmGrpcngp 24514 toNrmGrp ctng 24515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-tset 17288 df-ds 17291 df-rest 17434 df-topn 17435 df-0g 17453 df-topgen 17455 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-xms 24257 df-ms 24258 df-nm 24519 df-ngp 24520 df-tng 24521 |
| This theorem is referenced by: tngngp 24591 tngngp3 24593 tcphcph 25187 |
| Copyright terms: Public domain | W3C validator |