MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngpd Structured version   Visualization version   GIF version

Theorem tngngpd 24574
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp.x 𝑋 = (Base‘𝐺)
tngngp.m = (-g𝐺)
tngngp.z 0 = (0g𝐺)
tngngpd.1 (𝜑𝐺 ∈ Grp)
tngngpd.2 (𝜑𝑁:𝑋⟶ℝ)
tngngpd.3 ((𝜑𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
tngngpd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
Assertion
Ref Expression
tngngpd (𝜑𝑇 ∈ NrmGrp)
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem tngngpd
StepHypRef Expression
1 tngngpd.1 . 2 (𝜑𝐺 ∈ Grp)
2 tngngpd.2 . . . 4 (𝜑𝑁:𝑋⟶ℝ)
3 tngngp.x . . . . . 6 𝑋 = (Base‘𝐺)
43fvexi 6854 . . . . 5 𝑋 ∈ V
5 reex 11135 . . . . 5 ℝ ∈ V
6 fex2 7892 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
74, 5, 6mp3an23 1455 . . . 4 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
8 tngngp.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
9 tngngp.m . . . . 5 = (-g𝐺)
108, 9tngds 24569 . . . 4 (𝑁 ∈ V → (𝑁 ) = (dist‘𝑇))
112, 7, 103syl 18 . . 3 (𝜑 → (𝑁 ) = (dist‘𝑇))
12 tngngp.z . . . 4 0 = (0g𝐺)
13 tngngpd.3 . . . 4 ((𝜑𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
14 tngngpd.4 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
153, 9, 12, 1, 2, 13, 14nrmmetd 24495 . . 3 (𝜑 → (𝑁 ) ∈ (Met‘𝑋))
1611, 15eqeltrrd 2829 . 2 (𝜑 → (dist‘𝑇) ∈ (Met‘𝑋))
17 eqid 2729 . . . 4 (dist‘𝑇) = (dist‘𝑇)
188, 3, 17tngngp2 24573 . . 3 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
192, 18syl 17 . 2 (𝜑 → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
201, 16, 19mpbir2and 713 1 (𝜑𝑇 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444   class class class wbr 5102  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   + caddc 11047  cle 11185  Basecbs 17155  distcds 17205  0gc0g 17378  Grpcgrp 18847  -gcsg 18849  Metcmet 21282  NrmGrpcngp 24498   toNrmGrp ctng 24499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-tset 17215  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-tng 24505
This theorem is referenced by:  tngngp  24575  tngngp3  24577  tcphcph  25170
  Copyright terms: Public domain W3C validator