Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tngngpd | Structured version Visualization version GIF version |
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tngngp.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tngngp.x | ⊢ 𝑋 = (Base‘𝐺) |
tngngp.m | ⊢ − = (-g‘𝐺) |
tngngp.z | ⊢ 0 = (0g‘𝐺) |
tngngpd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
tngngpd.2 | ⊢ (𝜑 → 𝑁:𝑋⟶ℝ) |
tngngpd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) |
tngngpd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
Ref | Expression |
---|---|
tngngpd | ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngngpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | tngngpd.2 | . . . 4 ⊢ (𝜑 → 𝑁:𝑋⟶ℝ) | |
3 | tngngp.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
4 | 3 | fvexi 6677 | . . . . 5 ⊢ 𝑋 ∈ V |
5 | reex 10679 | . . . . 5 ⊢ ℝ ∈ V | |
6 | fex2 7649 | . . . . 5 ⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V) | |
7 | 4, 5, 6 | mp3an23 1450 | . . . 4 ⊢ (𝑁:𝑋⟶ℝ → 𝑁 ∈ V) |
8 | tngngp.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
9 | tngngp.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
10 | 8, 9 | tngds 23363 | . . . 4 ⊢ (𝑁 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
11 | 2, 7, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑁 ∘ − ) = (dist‘𝑇)) |
12 | tngngp.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
13 | tngngpd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
14 | tngngpd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
15 | 3, 9, 12, 1, 2, 13, 14 | nrmmetd 23289 | . . 3 ⊢ (𝜑 → (𝑁 ∘ − ) ∈ (Met‘𝑋)) |
16 | 11, 15 | eqeltrrd 2853 | . 2 ⊢ (𝜑 → (dist‘𝑇) ∈ (Met‘𝑋)) |
17 | eqid 2758 | . . . 4 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
18 | 8, 3, 17 | tngngp2 23367 | . . 3 ⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋)))) |
19 | 2, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋)))) |
20 | 1, 16, 19 | mpbir2and 712 | 1 ⊢ (𝜑 → 𝑇 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 class class class wbr 5036 ∘ ccom 5532 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ℝcr 10587 0cc0 10588 + caddc 10591 ≤ cle 10727 Basecbs 16554 distcds 16645 0gc0g 16784 Grpcgrp 18182 -gcsg 18184 Metcmet 20165 NrmGrpcngp 23292 toNrmGrp ctng 23293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-plusg 16649 df-tset 16655 df-ds 16658 df-rest 16767 df-topn 16768 df-0g 16786 df-topgen 16788 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 df-minusg 18186 df-sbg 18187 df-psmet 20171 df-xmet 20172 df-met 20173 df-bl 20174 df-mopn 20175 df-top 21607 df-topon 21624 df-topsp 21646 df-bases 21659 df-xms 23035 df-ms 23036 df-nm 23297 df-ngp 23298 df-tng 23299 |
This theorem is referenced by: tngngp 23369 tngngp3 23371 tcphcph 23950 |
Copyright terms: Public domain | W3C validator |