MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngpd Structured version   Visualization version   GIF version

Theorem tngngpd 23262
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp.x 𝑋 = (Base‘𝐺)
tngngp.m = (-g𝐺)
tngngp.z 0 = (0g𝐺)
tngngpd.1 (𝜑𝐺 ∈ Grp)
tngngpd.2 (𝜑𝑁:𝑋⟶ℝ)
tngngpd.3 ((𝜑𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
tngngpd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
Assertion
Ref Expression
tngngpd (𝜑𝑇 ∈ NrmGrp)
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem tngngpd
StepHypRef Expression
1 tngngpd.1 . 2 (𝜑𝐺 ∈ Grp)
2 tngngpd.2 . . . 4 (𝜑𝑁:𝑋⟶ℝ)
3 tngngp.x . . . . . 6 𝑋 = (Base‘𝐺)
43fvexi 6684 . . . . 5 𝑋 ∈ V
5 reex 10628 . . . . 5 ℝ ∈ V
6 fex2 7638 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
74, 5, 6mp3an23 1449 . . . 4 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
8 tngngp.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
9 tngngp.m . . . . 5 = (-g𝐺)
108, 9tngds 23257 . . . 4 (𝑁 ∈ V → (𝑁 ) = (dist‘𝑇))
112, 7, 103syl 18 . . 3 (𝜑 → (𝑁 ) = (dist‘𝑇))
12 tngngp.z . . . 4 0 = (0g𝐺)
13 tngngpd.3 . . . 4 ((𝜑𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
14 tngngpd.4 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
153, 9, 12, 1, 2, 13, 14nrmmetd 23184 . . 3 (𝜑 → (𝑁 ) ∈ (Met‘𝑋))
1611, 15eqeltrrd 2914 . 2 (𝜑 → (dist‘𝑇) ∈ (Met‘𝑋))
17 eqid 2821 . . . 4 (dist‘𝑇) = (dist‘𝑇)
188, 3, 17tngngp2 23261 . . 3 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
192, 18syl 17 . 2 (𝜑 → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
201, 16, 19mpbir2and 711 1 (𝜑𝑇 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540  cle 10676  Basecbs 16483  distcds 16574  0gc0g 16713  Grpcgrp 18103  -gcsg 18105  Metcmet 20531  NrmGrpcngp 23187   toNrmGrp ctng 23188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-tset 16584  df-ds 16587  df-rest 16696  df-topn 16697  df-0g 16715  df-topgen 16717  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-tng 23194
This theorem is referenced by:  tngngp  23263  tngngp3  23265  tcphcph  23840
  Copyright terms: Public domain W3C validator