MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngpd Structured version   Visualization version   GIF version

Theorem tngngpd 24139
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp.x 𝑋 = (Base‘𝐺)
tngngp.m = (-g𝐺)
tngngp.z 0 = (0g𝐺)
tngngpd.1 (𝜑𝐺 ∈ Grp)
tngngpd.2 (𝜑𝑁:𝑋⟶ℝ)
tngngpd.3 ((𝜑𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
tngngpd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
Assertion
Ref Expression
tngngpd (𝜑𝑇 ∈ NrmGrp)
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem tngngpd
StepHypRef Expression
1 tngngpd.1 . 2 (𝜑𝐺 ∈ Grp)
2 tngngpd.2 . . . 4 (𝜑𝑁:𝑋⟶ℝ)
3 tngngp.x . . . . . 6 𝑋 = (Base‘𝐺)
43fvexi 6895 . . . . 5 𝑋 ∈ V
5 reex 11188 . . . . 5 ℝ ∈ V
6 fex2 7911 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
74, 5, 6mp3an23 1454 . . . 4 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
8 tngngp.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
9 tngngp.m . . . . 5 = (-g𝐺)
108, 9tngds 24133 . . . 4 (𝑁 ∈ V → (𝑁 ) = (dist‘𝑇))
112, 7, 103syl 18 . . 3 (𝜑 → (𝑁 ) = (dist‘𝑇))
12 tngngp.z . . . 4 0 = (0g𝐺)
13 tngngpd.3 . . . 4 ((𝜑𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
14 tngngpd.4 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
153, 9, 12, 1, 2, 13, 14nrmmetd 24052 . . 3 (𝜑 → (𝑁 ) ∈ (Met‘𝑋))
1611, 15eqeltrrd 2835 . 2 (𝜑 → (dist‘𝑇) ∈ (Met‘𝑋))
17 eqid 2733 . . . 4 (dist‘𝑇) = (dist‘𝑇)
188, 3, 17tngngp2 24138 . . 3 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
192, 18syl 17 . 2 (𝜑 → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
201, 16, 19mpbir2and 712 1 (𝜑𝑇 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3475   class class class wbr 5144  ccom 5676  wf 6531  cfv 6535  (class class class)co 7396  cr 11096  0cc0 11097   + caddc 11100  cle 11236  Basecbs 17131  distcds 17193  0gc0g 17372  Grpcgrp 18806  -gcsg 18808  Metcmet 20904  NrmGrpcngp 24055   toNrmGrp ctng 24056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-sup 9424  df-inf 9425  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-plusg 17197  df-tset 17203  df-ds 17206  df-rest 17355  df-topn 17356  df-0g 17374  df-topgen 17376  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-sbg 18811  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-top 22365  df-topon 22382  df-topsp 22404  df-bases 22418  df-xms 23795  df-ms 23796  df-nm 24060  df-ngp 24061  df-tng 24062
This theorem is referenced by:  tngngp  24140  tngngp3  24142  tcphcph  24723
  Copyright terms: Public domain W3C validator