| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmbas3 | Structured version Visualization version GIF version | ||
| Description: An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019.) |
| Ref | Expression |
|---|---|
| frlmbas3.f | ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) |
| frlmbas3.b | ⊢ 𝐵 = (Base‘𝑅) |
| frlmbas3.v | ⊢ 𝑉 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| frlmbas3 | ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmbas3.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐹) | |
| 2 | 1 | eleq2i 2823 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Base‘𝐹)) |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝐹)) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (Base‘𝐹)) |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋 ∈ (Base‘𝐹)) |
| 6 | simpl 482 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝑊) | |
| 7 | xpfi 9204 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑁 × 𝑀) ∈ Fin) | |
| 8 | 6, 7 | anim12i 613 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin)) → (𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin)) |
| 9 | 8 | 3adant3 1132 | . . . . 5 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin)) |
| 10 | frlmbas3.f | . . . . . 6 ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) | |
| 11 | frlmbas3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | 10, 11 | frlmfibas 21700 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin) → (𝐵 ↑m (𝑁 × 𝑀)) = (Base‘𝐹)) |
| 13 | 9, 12 | syl 17 | . . . 4 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐵 ↑m (𝑁 × 𝑀)) = (Base‘𝐹)) |
| 14 | 5, 13 | eleqtrrd 2834 | . . 3 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀))) |
| 15 | elmapi 8773 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵) |
| 17 | simp3l 1202 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝐼 ∈ 𝑁) | |
| 18 | simp3r 1203 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝐽 ∈ 𝑀) | |
| 19 | 16, 17, 18 | fovcdmd 7518 | 1 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 Basecbs 17120 freeLMod cfrlm 21684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-sra 21108 df-rgmod 21109 df-dsmm 21670 df-frlm 21685 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |