Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmbas3 | Structured version Visualization version GIF version |
Description: An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019.) |
Ref | Expression |
---|---|
frlmbas3.f | ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) |
frlmbas3.b | ⊢ 𝐵 = (Base‘𝑅) |
frlmbas3.v | ⊢ 𝑉 = (Base‘𝐹) |
Ref | Expression |
---|---|
frlmbas3 | ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmbas3.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐹) | |
2 | 1 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Base‘𝐹)) |
3 | 2 | biimpi 219 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝐹)) |
4 | 3 | adantl 485 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (Base‘𝐹)) |
5 | 4 | 3ad2ant1 1135 | . . . 4 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋 ∈ (Base‘𝐹)) |
6 | simpl 486 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝑊) | |
7 | xpfi 8967 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑁 × 𝑀) ∈ Fin) | |
8 | 6, 7 | anim12i 616 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin)) → (𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin)) |
9 | 8 | 3adant3 1134 | . . . . 5 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin)) |
10 | frlmbas3.f | . . . . . 6 ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) | |
11 | frlmbas3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
12 | 10, 11 | frlmfibas 20749 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ (𝑁 × 𝑀) ∈ Fin) → (𝐵 ↑m (𝑁 × 𝑀)) = (Base‘𝐹)) |
13 | 9, 12 | syl 17 | . . . 4 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐵 ↑m (𝑁 × 𝑀)) = (Base‘𝐹)) |
14 | 5, 13 | eleqtrrd 2842 | . . 3 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀))) |
15 | elmapi 8551 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵) |
17 | simp3l 1203 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝐼 ∈ 𝑁) | |
18 | simp3r 1204 | . 2 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → 𝐽 ∈ 𝑀) | |
19 | 16, 17, 18 | fovrnd 7399 | 1 ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 × cxp 5564 ⟶wf 6394 ‘cfv 6398 (class class class)co 7232 ↑m cmap 8529 Fincfn 8647 Basecbs 16785 freeLMod cfrlm 20733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-map 8531 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-sup 9083 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-fz 13121 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-sca 16843 df-vsca 16844 df-ip 16845 df-tset 16846 df-ple 16847 df-ds 16849 df-hom 16851 df-cco 16852 df-0g 16971 df-prds 16977 df-pws 16979 df-sra 20234 df-rgmod 20235 df-dsmm 20719 df-frlm 20734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |