| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmulcl | Structured version Visualization version GIF version | ||
| Description: Multiplication of an NxN matrix with an N-dimensional vector results in an N-dimensional vector. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 23-Feb-2019.) (Proof shortened by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| mavmulcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mavmulcl.m | ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| mavmulcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mavmulcl.t | ⊢ · = (.r‘𝑅) |
| mavmulcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mavmulcl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mavmulcl.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| mavmulcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| Ref | Expression |
|---|---|
| mavmulcl | ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mavmulcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mavmulcl.m | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | mavmulcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | mavmulcl.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 5 | mavmulcl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | mavmulcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mavmulcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) | |
| 8 | mavmulcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mavmulval 22483 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
| 10 | ringcmn 20242 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 11 | 5, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CMnd) |
| 13 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 14 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 15 | 1, 3 | matbas2 22359 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 16 | 6, 5, 15 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 17 | 7, 16 | eleqtrrd 2837 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 18 | elmapi 8863 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 22 | 21 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 23 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 24 | 20, 22, 23 | fovcdmd 7579 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
| 25 | elmapi 8863 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m 𝑁) → 𝑌:𝑁⟶𝐵) | |
| 26 | 8, 25 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:𝑁⟶𝐵) |
| 27 | 26 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑌:𝑁⟶𝐵) |
| 28 | 27, 23 | ffvelcdmd 7075 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 29 | 3, 4 | ringcl 20210 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑌‘𝑗) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 30 | 14, 24, 28, 29 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 31 | 30 | ralrimiva 3132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 32 | 3, 12, 13, 31 | gsummptcl 19948 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
| 33 | 32 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
| 34 | eqid 2735 | . . . . 5 ⊢ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) | |
| 35 | 34 | fmpt 7100 | . . . 4 ⊢ (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵) |
| 36 | 3 | fvexi 6890 | . . . . 5 ⊢ 𝐵 ∈ V |
| 37 | elmapg 8853 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝑁 ∈ Fin) → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) | |
| 38 | 36, 6, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) |
| 39 | 35, 38 | bitr4id 290 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁))) |
| 40 | 33, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁)) |
| 41 | 9, 40 | eqeltrd 2834 | 1 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 〈cop 4607 ↦ cmpt 5201 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 Basecbs 17228 .rcmulr 17272 Σg cgsu 17454 CMndccmn 19761 Ringcrg 20193 Mat cmat 22345 maVecMul cmvmul 22478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-ur 20142 df-ring 20195 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 df-mat 22346 df-mvmul 22479 |
| This theorem is referenced by: mavmulass 22487 slesolex 22620 |
| Copyright terms: Public domain | W3C validator |