MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulcl Structured version   Visualization version   GIF version

Theorem mavmulcl 22460
Description: Multiplication of an NxN matrix with an N-dimensional vector results in an N-dimensional vector. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 23-Feb-2019.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mavmulcl.a 𝐴 = (𝑁 Mat 𝑅)
mavmulcl.m × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
mavmulcl.b 𝐵 = (Base‘𝑅)
mavmulcl.t · = (.r𝑅)
mavmulcl.r (𝜑𝑅 ∈ Ring)
mavmulcl.n (𝜑𝑁 ∈ Fin)
mavmulcl.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmulcl.y (𝜑𝑌 ∈ (𝐵m 𝑁))
Assertion
Ref Expression
mavmulcl (𝜑 → (𝑋 × 𝑌) ∈ (𝐵m 𝑁))

Proof of Theorem mavmulcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mavmulcl.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 mavmulcl.m . . 3 × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 mavmulcl.b . . 3 𝐵 = (Base‘𝑅)
4 mavmulcl.t . . 3 · = (.r𝑅)
5 mavmulcl.r . . 3 (𝜑𝑅 ∈ Ring)
6 mavmulcl.n . . 3 (𝜑𝑁 ∈ Fin)
7 mavmulcl.x . . 3 (𝜑𝑋 ∈ (Base‘𝐴))
8 mavmulcl.y . . 3 (𝜑𝑌 ∈ (𝐵m 𝑁))
91, 2, 3, 4, 5, 6, 7, 8mavmulval 22458 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
10 ringcmn 20198 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
115, 10syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
1211adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ CMnd)
136adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
145ad2antrr 726 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
151, 3matbas2 22334 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
166, 5, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
177, 16eleqtrrd 2834 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
18 elmapi 8773 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐵)
2019ad2antrr 726 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
21 simpr 484 . . . . . . . . 9 ((𝜑𝑖𝑁) → 𝑖𝑁)
2221adantr 480 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
23 simpr 484 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
2420, 22, 23fovcdmd 7518 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
25 elmapi 8773 . . . . . . . . . 10 (𝑌 ∈ (𝐵m 𝑁) → 𝑌:𝑁𝐵)
268, 25syl 17 . . . . . . . . 9 (𝜑𝑌:𝑁𝐵)
2726ad2antrr 726 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑌:𝑁𝐵)
2827, 23ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
293, 4ringcl 20166 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑌𝑗)) ∈ 𝐵)
3014, 24, 28, 29syl3anc 1373 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑌𝑗)) ∈ 𝐵)
3130ralrimiva 3124 . . . . 5 ((𝜑𝑖𝑁) → ∀𝑗𝑁 ((𝑖𝑋𝑗) · (𝑌𝑗)) ∈ 𝐵)
323, 12, 13, 31gsummptcl 19877 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))) ∈ 𝐵)
3332ralrimiva 3124 . . 3 (𝜑 → ∀𝑖𝑁 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))) ∈ 𝐵)
34 eqid 2731 . . . . 5 (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))))
3534fmpt 7043 . . . 4 (∀𝑖𝑁 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))) ∈ 𝐵 ↔ (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))):𝑁𝐵)
363fvexi 6836 . . . . 5 𝐵 ∈ V
37 elmapg 8763 . . . . 5 ((𝐵 ∈ V ∧ 𝑁 ∈ Fin) → ((𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))) ∈ (𝐵m 𝑁) ↔ (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))):𝑁𝐵))
3836, 6, 37sylancr 587 . . . 4 (𝜑 → ((𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))) ∈ (𝐵m 𝑁) ↔ (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))):𝑁𝐵))
3935, 38bitr4id 290 . . 3 (𝜑 → (∀𝑖𝑁 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))) ∈ 𝐵 ↔ (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))) ∈ (𝐵m 𝑁)))
4033, 39mpbid 232 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))) ∈ (𝐵m 𝑁))
419, 40eqeltrd 2831 1 (𝜑 → (𝑋 × 𝑌) ∈ (𝐵m 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cop 4582  cmpt 5172   × cxp 5614  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  Basecbs 17117  .rcmulr 17159   Σg cgsu 17341  CMndccmn 19690  Ringcrg 20149   Mat cmat 22320   maVecMul cmvmul 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-ur 20098  df-ring 20151  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-mat 22321  df-mvmul 22454
This theorem is referenced by:  mavmulass  22462  slesolex  22595
  Copyright terms: Public domain W3C validator