![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mavmulcl | Structured version Visualization version GIF version |
Description: Multiplication of an NxN matrix with an N-dimensional vector results in an N-dimensional vector. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 23-Feb-2019.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
mavmulcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mavmulcl.m | ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
mavmulcl.b | ⊢ 𝐵 = (Base‘𝑅) |
mavmulcl.t | ⊢ · = (.r‘𝑅) |
mavmulcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mavmulcl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mavmulcl.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
mavmulcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
Ref | Expression |
---|---|
mavmulcl | ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mavmulcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | mavmulcl.m | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
3 | mavmulcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | mavmulcl.t | . . 3 ⊢ · = (.r‘𝑅) | |
5 | mavmulcl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | mavmulcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mavmulcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) | |
8 | mavmulcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mavmulval 22366 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
10 | ringcmn 20177 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
11 | 5, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CMnd) |
13 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
14 | 5 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
15 | 1, 3 | matbas2 22242 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
16 | 6, 5, 15 | syl2anc 583 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
17 | 7, 16 | eleqtrrd 2835 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
18 | elmapi 8849 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) | |
19 | 17, 18 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
20 | 19 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
22 | 21 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
23 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
24 | 20, 22, 23 | fovcdmd 7583 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
25 | elmapi 8849 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m 𝑁) → 𝑌:𝑁⟶𝐵) | |
26 | 8, 25 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:𝑁⟶𝐵) |
27 | 26 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑌:𝑁⟶𝐵) |
28 | 27, 23 | ffvelcdmd 7087 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
29 | 3, 4 | ringcl 20151 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑌‘𝑗) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
30 | 14, 24, 28, 29 | syl3anc 1370 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
31 | 30 | ralrimiva 3145 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
32 | 3, 12, 13, 31 | gsummptcl 19883 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
33 | 32 | ralrimiva 3145 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
34 | eqid 2731 | . . . . 5 ⊢ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) | |
35 | 34 | fmpt 7111 | . . . 4 ⊢ (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵) |
36 | 3 | fvexi 6905 | . . . . 5 ⊢ 𝐵 ∈ V |
37 | elmapg 8839 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝑁 ∈ Fin) → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) | |
38 | 36, 6, 37 | sylancr 586 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) |
39 | 35, 38 | bitr4id 290 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁))) |
40 | 33, 39 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁)) |
41 | 9, 40 | eqeltrd 2832 | 1 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 〈cop 4634 ↦ cmpt 5231 × cxp 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 Fincfn 8945 Basecbs 17151 .rcmulr 17205 Σg cgsu 17393 CMndccmn 19696 Ringcrg 20134 Mat cmat 22226 maVecMul cmvmul 22361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-ur 20083 df-ring 20136 df-sra 21018 df-rgmod 21019 df-dsmm 21596 df-frlm 21611 df-mat 22227 df-mvmul 22362 |
This theorem is referenced by: mavmulass 22370 slesolex 22503 |
Copyright terms: Public domain | W3C validator |