| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmulcl | Structured version Visualization version GIF version | ||
| Description: Multiplication of an NxN matrix with an N-dimensional vector results in an N-dimensional vector. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 23-Feb-2019.) (Proof shortened by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| mavmulcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mavmulcl.m | ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| mavmulcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mavmulcl.t | ⊢ · = (.r‘𝑅) |
| mavmulcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mavmulcl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mavmulcl.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| mavmulcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| Ref | Expression |
|---|---|
| mavmulcl | ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mavmulcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mavmulcl.m | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | mavmulcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | mavmulcl.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 5 | mavmulcl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | mavmulcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mavmulcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) | |
| 8 | mavmulcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mavmulval 22551 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
| 10 | ringcmn 20279 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 11 | 5, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CMnd) |
| 13 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 14 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 15 | 1, 3 | matbas2 22427 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 16 | 6, 5, 15 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 17 | 7, 16 | eleqtrrd 2844 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 18 | elmapi 8889 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 22 | 21 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 23 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 24 | 20, 22, 23 | fovcdmd 7605 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
| 25 | elmapi 8889 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m 𝑁) → 𝑌:𝑁⟶𝐵) | |
| 26 | 8, 25 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:𝑁⟶𝐵) |
| 27 | 26 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑌:𝑁⟶𝐵) |
| 28 | 27, 23 | ffvelcdmd 7105 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 29 | 3, 4 | ringcl 20247 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑌‘𝑗) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 30 | 14, 24, 28, 29 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 31 | 30 | ralrimiva 3146 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 32 | 3, 12, 13, 31 | gsummptcl 19985 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
| 33 | 32 | ralrimiva 3146 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
| 34 | eqid 2737 | . . . . 5 ⊢ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) | |
| 35 | 34 | fmpt 7130 | . . . 4 ⊢ (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵) |
| 36 | 3 | fvexi 6920 | . . . . 5 ⊢ 𝐵 ∈ V |
| 37 | elmapg 8879 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝑁 ∈ Fin) → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) | |
| 38 | 36, 6, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) |
| 39 | 35, 38 | bitr4id 290 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁))) |
| 40 | 33, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁)) |
| 41 | 9, 40 | eqeltrd 2841 | 1 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 〈cop 4632 ↦ cmpt 5225 × cxp 5683 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 Fincfn 8985 Basecbs 17247 .rcmulr 17298 Σg cgsu 17485 CMndccmn 19798 Ringcrg 20230 Mat cmat 22411 maVecMul cmvmul 22546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-ur 20179 df-ring 20232 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-mat 22412 df-mvmul 22547 |
| This theorem is referenced by: mavmulass 22555 slesolex 22688 |
| Copyright terms: Public domain | W3C validator |