| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmulcl | Structured version Visualization version GIF version | ||
| Description: Multiplication of an NxN matrix with an N-dimensional vector results in an N-dimensional vector. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 23-Feb-2019.) (Proof shortened by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| mavmulcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mavmulcl.m | ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| mavmulcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mavmulcl.t | ⊢ · = (.r‘𝑅) |
| mavmulcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mavmulcl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mavmulcl.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| mavmulcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| Ref | Expression |
|---|---|
| mavmulcl | ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mavmulcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mavmulcl.m | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | mavmulcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | mavmulcl.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 5 | mavmulcl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | mavmulcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mavmulcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) | |
| 8 | mavmulcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mavmulval 22448 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
| 10 | ringcmn 20185 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 11 | 5, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CMnd) |
| 13 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 14 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 15 | 1, 3 | matbas2 22324 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 16 | 6, 5, 15 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 17 | 7, 16 | eleqtrrd 2831 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 18 | elmapi 8783 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 22 | 21 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 23 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 24 | 20, 22, 23 | fovcdmd 7525 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
| 25 | elmapi 8783 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m 𝑁) → 𝑌:𝑁⟶𝐵) | |
| 26 | 8, 25 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:𝑁⟶𝐵) |
| 27 | 26 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑌:𝑁⟶𝐵) |
| 28 | 27, 23 | ffvelcdmd 7023 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 29 | 3, 4 | ringcl 20153 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑌‘𝑗) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 30 | 14, 24, 28, 29 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 31 | 30 | ralrimiva 3121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗) · (𝑌‘𝑗)) ∈ 𝐵) |
| 32 | 3, 12, 13, 31 | gsummptcl 19864 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
| 33 | 32 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵) |
| 34 | eqid 2729 | . . . . 5 ⊢ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) | |
| 35 | 34 | fmpt 7048 | . . . 4 ⊢ (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵) |
| 36 | 3 | fvexi 6840 | . . . . 5 ⊢ 𝐵 ∈ V |
| 37 | elmapg 8773 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝑁 ∈ Fin) → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) | |
| 38 | 36, 6, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁) ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))):𝑁⟶𝐵)) |
| 39 | 35, 38 | bitr4id 290 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑁 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁))) |
| 40 | 33, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ (𝐵 ↑m 𝑁)) |
| 41 | 9, 40 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 〈cop 4585 ↦ cmpt 5176 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 Basecbs 17138 .rcmulr 17180 Σg cgsu 17362 CMndccmn 19677 Ringcrg 20136 Mat cmat 22310 maVecMul cmvmul 22443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-ur 20085 df-ring 20138 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-mat 22311 df-mvmul 22444 |
| This theorem is referenced by: mavmulass 22452 slesolex 22585 |
| Copyright terms: Public domain | W3C validator |