![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege88 | Structured version Visualization version GIF version |
Description: Commuted form of frege87 43652. Proposition 88 of [Frege1879] p. 67. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege87.x | ⊢ 𝑋 ∈ 𝑈 |
frege87.y | ⊢ 𝑌 ∈ 𝑉 |
frege87.z | ⊢ 𝑍 ∈ 𝑊 |
frege87.r | ⊢ 𝑅 ∈ 𝑆 |
frege87.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege88 | ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑍 ∈ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege87.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
2 | frege87.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
3 | frege87.z | . . 3 ⊢ 𝑍 ∈ 𝑊 | |
4 | frege87.r | . . 3 ⊢ 𝑅 ∈ 𝑆 | |
5 | frege87.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
6 | 1, 2, 3, 4, 5 | frege87 43652 | . 2 ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴)))) |
7 | frege15 43528 | . 2 ⊢ ((𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑍 ∈ 𝐴))))) | |
8 | 6, 7 | ax-mp 5 | 1 ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑍 ∈ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 ∈ wcel 2099 class class class wbr 5144 ‘cfv 6544 t+ctcl 14983 hereditary whe 43474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-frege1 43492 ax-frege2 43493 ax-frege8 43511 ax-frege52a 43559 ax-frege58b 43603 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-n0 12517 df-z 12603 df-uz 12867 df-seq 14014 df-trcl 14985 df-relexp 15018 df-he 43475 |
This theorem is referenced by: frege95 43660 |
Copyright terms: Public domain | W3C validator |