| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nngt0d | Structured version Visualization version GIF version | ||
| Description: A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nngt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nngt0 12297 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Copyright terms: Public domain | W3C validator |