| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprmselelfz | Structured version Visualization version GIF version | ||
| Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| fvprmselelfz.f | ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) |
| Ref | Expression |
|---|---|
| fvprmselelfz | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprmselelfz.f | . . . 4 ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) | |
| 2 | eleq1 2816 | . . . . . 6 ⊢ (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ)) | |
| 3 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑋 → 𝑚 = 𝑋) | |
| 4 | 2, 3 | ifbieq1d 4503 | . . . . 5 ⊢ (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1)) |
| 5 | iftrue 4484 | . . . . . 6 ⊢ (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) |
| 7 | 4, 6 | sylan9eqr 2786 | . . . 4 ⊢ (((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋) |
| 8 | elfznn 13474 | . . . . . 6 ⊢ (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 𝑋 ∈ ℕ) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
| 11 | 1, 7, 10, 10 | fvmptd2 6942 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 𝑋) |
| 12 | simprr 772 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ (1...𝑁)) | |
| 13 | 11, 12 | eqeltrd 2828 | . 2 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| 14 | iffalse 4487 | . . . . . 6 ⊢ (¬ 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) |
| 16 | 4, 15 | sylan9eqr 2786 | . . . 4 ⊢ (((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
| 17 | 9 | adantl 481 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
| 18 | 1nn 12157 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ ℕ) |
| 20 | 1, 16, 17, 19 | fvmptd2 6942 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 1) |
| 21 | elnnuz 12797 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 22 | eluzfz1 13452 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
| 23 | 21, 22 | sylbi 217 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (1...𝑁)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 1 ∈ (1...𝑁)) |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ (1...𝑁)) |
| 26 | 20, 25 | eqeltrd 2828 | . 2 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| 27 | 13, 26 | pm2.61ian 811 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4478 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 1c1 11029 ℕcn 12146 ℤ≥cuz 12753 ...cfz 13428 ℙcprime 16600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-z 12490 df-uz 12754 df-fz 13429 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |