Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvprmselelfz | Structured version Visualization version GIF version |
Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020.) |
Ref | Expression |
---|---|
fvprmselelfz.f | ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) |
Ref | Expression |
---|---|
fvprmselelfz | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvprmselelfz.f | . . . 4 ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) | |
2 | eleq1 2826 | . . . . . 6 ⊢ (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ)) | |
3 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑋 → 𝑚 = 𝑋) | |
4 | 2, 3 | ifbieq1d 4484 | . . . . 5 ⊢ (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1)) |
5 | iftrue 4466 | . . . . . 6 ⊢ (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) |
7 | 4, 6 | sylan9eqr 2800 | . . . 4 ⊢ (((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋) |
8 | elfznn 13273 | . . . . . 6 ⊢ (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ) | |
9 | 8 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 𝑋 ∈ ℕ) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
11 | 1, 7, 10, 10 | fvmptd2 6876 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 𝑋) |
12 | simprr 770 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ (1...𝑁)) | |
13 | 11, 12 | eqeltrd 2839 | . 2 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
14 | iffalse 4469 | . . . . . 6 ⊢ (¬ 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) | |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) |
16 | 4, 15 | sylan9eqr 2800 | . . . 4 ⊢ (((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
17 | 9 | adantl 482 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
18 | 1nn 11972 | . . . . 5 ⊢ 1 ∈ ℕ | |
19 | 18 | a1i 11 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ ℕ) |
20 | 1, 16, 17, 19 | fvmptd2 6876 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 1) |
21 | elnnuz 12610 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
22 | eluzfz1 13251 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
23 | 21, 22 | sylbi 216 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (1...𝑁)) |
24 | 23 | adantr 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 1 ∈ (1...𝑁)) |
25 | 24 | adantl 482 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ (1...𝑁)) |
26 | 20, 25 | eqeltrd 2839 | . 2 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
27 | 13, 26 | pm2.61ian 809 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4460 ↦ cmpt 5157 ‘cfv 6427 (class class class)co 7268 1c1 10860 ℕcn 11961 ℤ≥cuz 12570 ...cfz 13227 ℙcprime 16364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-z 12308 df-uz 12571 df-fz 13228 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |