| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprmselelfz | Structured version Visualization version GIF version | ||
| Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| fvprmselelfz.f | ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) |
| Ref | Expression |
|---|---|
| fvprmselelfz | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprmselelfz.f | . . . 4 ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) | |
| 2 | eleq1 2829 | . . . . . 6 ⊢ (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ)) | |
| 3 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑋 → 𝑚 = 𝑋) | |
| 4 | 2, 3 | ifbieq1d 4550 | . . . . 5 ⊢ (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1)) |
| 5 | iftrue 4531 | . . . . . 6 ⊢ (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) |
| 7 | 4, 6 | sylan9eqr 2799 | . . . 4 ⊢ (((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋) |
| 8 | elfznn 13593 | . . . . . 6 ⊢ (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 𝑋 ∈ ℕ) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
| 11 | 1, 7, 10, 10 | fvmptd2 7024 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 𝑋) |
| 12 | simprr 773 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ (1...𝑁)) | |
| 13 | 11, 12 | eqeltrd 2841 | . 2 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| 14 | iffalse 4534 | . . . . . 6 ⊢ (¬ 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) |
| 16 | 4, 15 | sylan9eqr 2799 | . . . 4 ⊢ (((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
| 17 | 9 | adantl 481 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
| 18 | 1nn 12277 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ ℕ) |
| 20 | 1, 16, 17, 19 | fvmptd2 7024 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 1) |
| 21 | elnnuz 12922 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 22 | eluzfz1 13571 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
| 23 | 21, 22 | sylbi 217 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (1...𝑁)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 1 ∈ (1...𝑁)) |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ (1...𝑁)) |
| 26 | 20, 25 | eqeltrd 2841 | . 2 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| 27 | 13, 26 | pm2.61ian 812 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4525 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 1c1 11156 ℕcn 12266 ℤ≥cuz 12878 ...cfz 13547 ℙcprime 16708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-z 12614 df-uz 12879 df-fz 13548 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |