| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprmselelfz | Structured version Visualization version GIF version | ||
| Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| fvprmselelfz.f | ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) |
| Ref | Expression |
|---|---|
| fvprmselelfz | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprmselelfz.f | . . . 4 ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) | |
| 2 | eleq1 2816 | . . . . . 6 ⊢ (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ)) | |
| 3 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑋 → 𝑚 = 𝑋) | |
| 4 | 2, 3 | ifbieq1d 4513 | . . . . 5 ⊢ (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1)) |
| 5 | iftrue 4494 | . . . . . 6 ⊢ (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) |
| 7 | 4, 6 | sylan9eqr 2786 | . . . 4 ⊢ (((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋) |
| 8 | elfznn 13514 | . . . . . 6 ⊢ (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 𝑋 ∈ ℕ) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
| 11 | 1, 7, 10, 10 | fvmptd2 6976 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 𝑋) |
| 12 | simprr 772 | . . 3 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ (1...𝑁)) | |
| 13 | 11, 12 | eqeltrd 2828 | . 2 ⊢ ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| 14 | iffalse 4497 | . . . . . 6 ⊢ (¬ 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) |
| 16 | 4, 15 | sylan9eqr 2786 | . . . 4 ⊢ (((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
| 17 | 9 | adantl 481 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ) |
| 18 | 1nn 12197 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ ℕ) |
| 20 | 1, 16, 17, 19 | fvmptd2 6976 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) = 1) |
| 21 | elnnuz 12837 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 22 | eluzfz1 13492 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
| 23 | 21, 22 | sylbi 217 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (1...𝑁)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 1 ∈ (1...𝑁)) |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ (1...𝑁)) |
| 26 | 20, 25 | eqeltrd 2828 | . 2 ⊢ ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| 27 | 13, 26 | pm2.61ian 811 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4488 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℕcn 12186 ℤ≥cuz 12793 ...cfz 13468 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |