![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmdvdsprmop | Structured version Visualization version GIF version |
Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmdvdsprmop | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsfz 16706 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | |
2 | simprl 769 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ≤ 𝑁) | |
3 | simprr 771 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ 𝐼) | |
4 | prmz 16676 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
5 | 4 | ad2antlr 725 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∈ ℤ) |
6 | nnnn0 12531 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | prmocl 17036 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
9 | 8 | nnzd 12637 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℤ) |
10 | 9 | adantr 479 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p‘𝑁) ∈ ℤ) |
11 | 10 | adantr 479 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p‘𝑁) ∈ ℤ) |
12 | 11 | adantr 479 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (#p‘𝑁) ∈ ℤ) |
13 | elfzelz 13555 | . . . . . . . 8 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
14 | 13 | ad2antlr 725 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ) |
15 | 14 | adantr 479 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝐼 ∈ ℤ) |
16 | prmdvdsprmo 17044 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁))) | |
17 | breq1 5156 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ≤ 𝑁 ↔ 𝑝 ≤ 𝑁)) | |
18 | breq1 5156 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ (#p‘𝑁) ↔ 𝑝 ∥ (#p‘𝑁))) | |
19 | 17, 18 | imbi12d 343 | . . . . . . . . . . . 12 ⊢ (𝑞 = 𝑝 → ((𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) ↔ (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
20 | 19 | rspcv 3604 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
21 | 16, 20 | syl5com 31 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
22 | 21 | adantr 479 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
23 | 22 | imp 405 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁))) |
24 | 23 | adantrd 490 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → 𝑝 ∥ (#p‘𝑁))) |
25 | 24 | imp 405 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ (#p‘𝑁)) |
26 | 5, 12, 15, 25, 3 | dvds2addd 16294 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ ((#p‘𝑁) + 𝐼)) |
27 | 2, 3, 26 | 3jca 1125 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
28 | 27 | ex 411 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
29 | 28 | reximdva 3158 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
30 | 1, 29 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 + caddc 11161 ≤ cle 11299 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12610 ...cfz 13538 ∥ cdvds 16256 ℙcprime 16672 #pcprmo 17033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-prod 15908 df-dvds 16257 df-prm 16673 df-prmo 17034 |
This theorem is referenced by: prmgapprmolem 17063 |
Copyright terms: Public domain | W3C validator |