MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmop Structured version   Visualization version   GIF version

Theorem prmdvdsprmop 16672
Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmop ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
Distinct variable groups:   𝐼,𝑝   𝑁,𝑝

Proof of Theorem prmdvdsprmop
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfz 16338 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼))
2 simprl 767 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝𝑁)
3 simprr 769 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝𝐼)
4 prmz 16308 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
54ad2antlr 723 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∈ ℤ)
6 nnnn0 12170 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 prmocl 16663 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (#p𝑁) ∈ ℕ)
86, 7syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℕ)
98nnzd 12354 . . . . . . . . 9 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℤ)
109adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p𝑁) ∈ ℤ)
1110adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p𝑁) ∈ ℤ)
1211adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → (#p𝑁) ∈ ℤ)
13 elfzelz 13185 . . . . . . . 8 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
1413ad2antlr 723 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ)
1514adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝐼 ∈ ℤ)
16 prmdvdsprmo 16671 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞𝑁𝑞 ∥ (#p𝑁)))
17 breq1 5073 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (𝑞𝑁𝑝𝑁))
18 breq1 5073 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (𝑞 ∥ (#p𝑁) ↔ 𝑝 ∥ (#p𝑁)))
1917, 18imbi12d 344 . . . . . . . . . . . 12 (𝑞 = 𝑝 → ((𝑞𝑁𝑞 ∥ (#p𝑁)) ↔ (𝑝𝑁𝑝 ∥ (#p𝑁))))
2019rspcv 3547 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞𝑁𝑞 ∥ (#p𝑁)) → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2116, 20syl5com 31 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2221adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2322imp 406 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑁𝑝 ∥ (#p𝑁)))
2423adantrd 491 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑁𝑝𝐼) → 𝑝 ∥ (#p𝑁)))
2524imp 406 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∥ (#p𝑁))
265, 12, 15, 25, 3dvds2addd 15929 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∥ ((#p𝑁) + 𝐼))
272, 3, 263jca 1126 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
2827ex 412 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑁𝑝𝐼) → (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))))
2928reximdva 3202 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))))
301, 29mpd 15 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255   + caddc 10805  cle 10941  cn 11903  2c2 11958  0cn0 12163  cz 12249  ...cfz 13168  cdvds 15891  cprime 16304  #pcprmo 16660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-dvds 15892  df-prm 16305  df-prmo 16661
This theorem is referenced by:  prmgapprmolem  16690
  Copyright terms: Public domain W3C validator