![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmdvdsprmop | Structured version Visualization version GIF version |
Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmdvdsprmop | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsfz 16739 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | |
2 | simprl 771 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ≤ 𝑁) | |
3 | simprr 773 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ 𝐼) | |
4 | prmz 16709 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
5 | 4 | ad2antlr 727 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∈ ℤ) |
6 | nnnn0 12531 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | prmocl 17068 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
9 | 8 | nnzd 12638 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℤ) |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p‘𝑁) ∈ ℤ) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p‘𝑁) ∈ ℤ) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (#p‘𝑁) ∈ ℤ) |
13 | elfzelz 13561 | . . . . . . . 8 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
14 | 13 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝐼 ∈ ℤ) |
16 | prmdvdsprmo 17076 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁))) | |
17 | breq1 5151 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ≤ 𝑁 ↔ 𝑝 ≤ 𝑁)) | |
18 | breq1 5151 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ (#p‘𝑁) ↔ 𝑝 ∥ (#p‘𝑁))) | |
19 | 17, 18 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑞 = 𝑝 → ((𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) ↔ (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
20 | 19 | rspcv 3618 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
21 | 16, 20 | syl5com 31 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
23 | 22 | imp 406 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁))) |
24 | 23 | adantrd 491 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → 𝑝 ∥ (#p‘𝑁))) |
25 | 24 | imp 406 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ (#p‘𝑁)) |
26 | 5, 12, 15, 25, 3 | dvds2addd 16326 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ ((#p‘𝑁) + 𝐼)) |
27 | 2, 3, 26 | 3jca 1127 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
28 | 27 | ex 412 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
29 | 28 | reximdva 3166 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
30 | 1, 29 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 + caddc 11156 ≤ cle 11294 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12611 ...cfz 13544 ∥ cdvds 16287 ℙcprime 16705 #pcprmo 17065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-prod 15937 df-dvds 16288 df-prm 16706 df-prmo 17066 |
This theorem is referenced by: prmgapprmolem 17095 |
Copyright terms: Public domain | W3C validator |