Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmdvdsprmop | Structured version Visualization version GIF version |
Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmdvdsprmop | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsfz 16420 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | |
2 | simprl 768 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ≤ 𝑁) | |
3 | simprr 770 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ 𝐼) | |
4 | prmz 16390 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
5 | 4 | ad2antlr 724 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∈ ℤ) |
6 | nnnn0 12250 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | prmocl 16745 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
9 | 8 | nnzd 12435 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℤ) |
10 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p‘𝑁) ∈ ℤ) |
11 | 10 | adantr 481 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p‘𝑁) ∈ ℤ) |
12 | 11 | adantr 481 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (#p‘𝑁) ∈ ℤ) |
13 | elfzelz 13266 | . . . . . . . 8 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
14 | 13 | ad2antlr 724 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ) |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝐼 ∈ ℤ) |
16 | prmdvdsprmo 16753 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁))) | |
17 | breq1 5076 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ≤ 𝑁 ↔ 𝑝 ≤ 𝑁)) | |
18 | breq1 5076 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ (#p‘𝑁) ↔ 𝑝 ∥ (#p‘𝑁))) | |
19 | 17, 18 | imbi12d 345 | . . . . . . . . . . . 12 ⊢ (𝑞 = 𝑝 → ((𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) ↔ (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
20 | 19 | rspcv 3554 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
21 | 16, 20 | syl5com 31 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
22 | 21 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
23 | 22 | imp 407 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁))) |
24 | 23 | adantrd 492 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → 𝑝 ∥ (#p‘𝑁))) |
25 | 24 | imp 407 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ (#p‘𝑁)) |
26 | 5, 12, 15, 25, 3 | dvds2addd 16011 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ ((#p‘𝑁) + 𝐼)) |
27 | 2, 3, 26 | 3jca 1127 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
28 | 27 | ex 413 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
29 | 28 | reximdva 3201 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
30 | 1, 29 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 + caddc 10884 ≤ cle 11020 ℕcn 11983 2c2 12038 ℕ0cn0 12243 ℤcz 12329 ...cfz 13249 ∥ cdvds 15973 ℙcprime 16386 #pcprmo 16742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-fz 13250 df-fzo 13393 df-seq 13732 df-exp 13793 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-clim 15207 df-prod 15626 df-dvds 15974 df-prm 16387 df-prmo 16743 |
This theorem is referenced by: prmgapprmolem 16772 |
Copyright terms: Public domain | W3C validator |