![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmdvdsprmop | Structured version Visualization version GIF version |
Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmdvdsprmop | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsfz 16647 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | |
2 | simprl 768 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ≤ 𝑁) | |
3 | simprr 770 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ 𝐼) | |
4 | prmz 16617 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
5 | 4 | ad2antlr 724 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∈ ℤ) |
6 | nnnn0 12484 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | prmocl 16972 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
9 | 8 | nnzd 12590 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℤ) |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p‘𝑁) ∈ ℤ) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p‘𝑁) ∈ ℤ) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (#p‘𝑁) ∈ ℤ) |
13 | elfzelz 13506 | . . . . . . . 8 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
14 | 13 | ad2antlr 724 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝐼 ∈ ℤ) |
16 | prmdvdsprmo 16980 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁))) | |
17 | breq1 5152 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ≤ 𝑁 ↔ 𝑝 ≤ 𝑁)) | |
18 | breq1 5152 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ (#p‘𝑁) ↔ 𝑝 ∥ (#p‘𝑁))) | |
19 | 17, 18 | imbi12d 343 | . . . . . . . . . . . 12 ⊢ (𝑞 = 𝑝 → ((𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) ↔ (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
20 | 19 | rspcv 3609 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
21 | 16, 20 | syl5com 31 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
23 | 22 | imp 406 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁))) |
24 | 23 | adantrd 491 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → 𝑝 ∥ (#p‘𝑁))) |
25 | 24 | imp 406 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ (#p‘𝑁)) |
26 | 5, 12, 15, 25, 3 | dvds2addd 16240 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ ((#p‘𝑁) + 𝐼)) |
27 | 2, 3, 26 | 3jca 1127 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
28 | 27 | ex 412 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
29 | 28 | reximdva 3167 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
30 | 1, 29 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 class class class wbr 5149 ‘cfv 6544 (class class class)co 7412 + caddc 11116 ≤ cle 11254 ℕcn 12217 2c2 12272 ℕ0cn0 12477 ℤcz 12563 ...cfz 13489 ∥ cdvds 16202 ℙcprime 16613 #pcprmo 16969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-prod 15855 df-dvds 16203 df-prm 16614 df-prmo 16970 |
This theorem is referenced by: prmgapprmolem 16999 |
Copyright terms: Public domain | W3C validator |