| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmdvdsprmop | Structured version Visualization version GIF version | ||
| Description: The primorial of a number plus an integer greater than 1 and less than or equal to the number is divisible by a prime less than or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmdvdsprmop | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsfz 16613 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | |
| 2 | simprl 770 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ≤ 𝑁) | |
| 3 | simprr 772 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ 𝐼) | |
| 4 | prmz 16583 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
| 5 | 4 | ad2antlr 727 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∈ ℤ) |
| 6 | nnnn0 12385 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 7 | prmocl 16943 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
| 9 | 8 | nnzd 12492 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℤ) |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p‘𝑁) ∈ ℤ) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p‘𝑁) ∈ ℤ) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (#p‘𝑁) ∈ ℤ) |
| 13 | elfzelz 13421 | . . . . . . . 8 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
| 14 | 13 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝐼 ∈ ℤ) |
| 16 | prmdvdsprmo 16951 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁))) | |
| 17 | breq1 5094 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ≤ 𝑁 ↔ 𝑝 ≤ 𝑁)) | |
| 18 | breq1 5094 | . . . . . . . . . . . . 13 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ (#p‘𝑁) ↔ 𝑝 ∥ (#p‘𝑁))) | |
| 19 | 17, 18 | imbi12d 344 | . . . . . . . . . . . 12 ⊢ (𝑞 = 𝑝 → ((𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) ↔ (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
| 20 | 19 | rspcv 3573 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞 ≤ 𝑁 → 𝑞 ∥ (#p‘𝑁)) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
| 21 | 16, 20 | syl5com 31 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
| 22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁)))) |
| 23 | 22 | imp 406 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁))) |
| 24 | 23 | adantrd 491 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → 𝑝 ∥ (#p‘𝑁))) |
| 25 | 24 | imp 406 | . . . . . 6 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ (#p‘𝑁)) |
| 26 | 5, 12, 15, 25, 3 | dvds2addd 16200 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → 𝑝 ∥ ((#p‘𝑁) + 𝐼)) |
| 27 | 2, 3, 26 | 3jca 1128 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
| 28 | 27 | ex 412 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
| 29 | 28 | reximdva 3145 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)))) |
| 30 | 1, 29 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 + caddc 11006 ≤ cle 11144 ℕcn 12122 2c2 12177 ℕ0cn0 12378 ℤcz 12465 ...cfz 13404 ∥ cdvds 16160 ℙcprime 16579 #pcprmo 16940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-prod 15808 df-dvds 16161 df-prm 16580 df-prmo 16941 |
| This theorem is referenced by: prmgapprmolem 16970 |
| Copyright terms: Public domain | W3C validator |