MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmop Structured version   Visualization version   GIF version

Theorem prmdvdsprmop 16744
Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmop ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
Distinct variable groups:   𝐼,𝑝   𝑁,𝑝

Proof of Theorem prmdvdsprmop
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfz 16410 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼))
2 simprl 768 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝𝑁)
3 simprr 770 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝𝐼)
4 prmz 16380 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
54ad2antlr 724 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∈ ℤ)
6 nnnn0 12240 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 prmocl 16735 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (#p𝑁) ∈ ℕ)
86, 7syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℕ)
98nnzd 12425 . . . . . . . . 9 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℤ)
109adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p𝑁) ∈ ℤ)
1110adantr 481 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p𝑁) ∈ ℤ)
1211adantr 481 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → (#p𝑁) ∈ ℤ)
13 elfzelz 13256 . . . . . . . 8 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
1413ad2antlr 724 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ)
1514adantr 481 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝐼 ∈ ℤ)
16 prmdvdsprmo 16743 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞𝑁𝑞 ∥ (#p𝑁)))
17 breq1 5077 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (𝑞𝑁𝑝𝑁))
18 breq1 5077 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (𝑞 ∥ (#p𝑁) ↔ 𝑝 ∥ (#p𝑁)))
1917, 18imbi12d 345 . . . . . . . . . . . 12 (𝑞 = 𝑝 → ((𝑞𝑁𝑞 ∥ (#p𝑁)) ↔ (𝑝𝑁𝑝 ∥ (#p𝑁))))
2019rspcv 3557 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞𝑁𝑞 ∥ (#p𝑁)) → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2116, 20syl5com 31 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2221adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2322imp 407 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑁𝑝 ∥ (#p𝑁)))
2423adantrd 492 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑁𝑝𝐼) → 𝑝 ∥ (#p𝑁)))
2524imp 407 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∥ (#p𝑁))
265, 12, 15, 25, 3dvds2addd 16001 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∥ ((#p𝑁) + 𝐼))
272, 3, 263jca 1127 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
2827ex 413 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑁𝑝𝐼) → (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))))
2928reximdva 3203 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))))
301, 29mpd 15 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275   + caddc 10874  cle 11010  cn 11973  2c2 12028  0cn0 12233  cz 12319  ...cfz 13239  cdvds 15963  cprime 16376  #pcprmo 16732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-dvds 15964  df-prm 16377  df-prmo 16733
This theorem is referenced by:  prmgapprmolem  16762
  Copyright terms: Public domain W3C validator