MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmop Structured version   Visualization version   GIF version

Theorem prmdvdsprmop 17081
Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmop ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
Distinct variable groups:   𝐼,𝑝   𝑁,𝑝

Proof of Theorem prmdvdsprmop
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfz 16742 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼))
2 simprl 771 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝𝑁)
3 simprr 773 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝𝐼)
4 prmz 16712 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
54ad2antlr 727 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∈ ℤ)
6 nnnn0 12533 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 prmocl 17072 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (#p𝑁) ∈ ℕ)
86, 7syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℕ)
98nnzd 12640 . . . . . . . . 9 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℤ)
109adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (#p𝑁) ∈ ℤ)
1110adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (#p𝑁) ∈ ℤ)
1211adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → (#p𝑁) ∈ ℤ)
13 elfzelz 13564 . . . . . . . 8 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
1413ad2antlr 727 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℤ)
1514adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝐼 ∈ ℤ)
16 prmdvdsprmo 17080 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ∀𝑞 ∈ ℙ (𝑞𝑁𝑞 ∥ (#p𝑁)))
17 breq1 5146 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (𝑞𝑁𝑝𝑁))
18 breq1 5146 . . . . . . . . . . . . 13 (𝑞 = 𝑝 → (𝑞 ∥ (#p𝑁) ↔ 𝑝 ∥ (#p𝑁)))
1917, 18imbi12d 344 . . . . . . . . . . . 12 (𝑞 = 𝑝 → ((𝑞𝑁𝑞 ∥ (#p𝑁)) ↔ (𝑝𝑁𝑝 ∥ (#p𝑁))))
2019rspcv 3618 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (∀𝑞 ∈ ℙ (𝑞𝑁𝑞 ∥ (#p𝑁)) → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2116, 20syl5com 31 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 ∈ ℙ → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2221adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝑝 ∈ ℙ → (𝑝𝑁𝑝 ∥ (#p𝑁))))
2322imp 406 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑁𝑝 ∥ (#p𝑁)))
2423adantrd 491 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑁𝑝𝐼) → 𝑝 ∥ (#p𝑁)))
2524imp 406 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∥ (#p𝑁))
265, 12, 15, 25, 3dvds2addd 16329 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → 𝑝 ∥ ((#p𝑁) + 𝐼))
272, 3, 263jca 1129 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼)) → (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
2827ex 412 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑁𝑝𝐼) → (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))))
2928reximdva 3168 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))))
301, 29mpd 15 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431   + caddc 11158  cle 11296  cn 12266  2c2 12321  0cn0 12526  cz 12613  ...cfz 13547  cdvds 16290  cprime 16708  #pcprmo 17069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-prod 15940  df-dvds 16291  df-prm 16709  df-prmo 17070
This theorem is referenced by:  prmgapprmolem  17099
  Copyright terms: Public domain W3C validator