Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem13 Structured version   Visualization version   GIF version

Theorem lcmineqlem13 39290
Description: Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem13.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem13.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem13.3 (𝜑𝑁 ∈ ℕ)
lcmineqlem13.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem13 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lcmineqlem13
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcmineqlem13.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem13.2 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnzd 12074 . . . 4 (𝜑𝑀 ∈ ℤ)
4 nnge1 11653 . . . . 5 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
52, 4syl 17 . . . 4 (𝜑 → 1 ≤ 𝑀)
6 lcmineqlem13.4 . . . 4 (𝜑𝑀𝑁)
73, 5, 63jca 1125 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁))
8 oveq1 7147 . . . . . . . . 9 (𝑖 = 1 → (𝑖 − 1) = (1 − 1))
98oveq2d 7156 . . . . . . . 8 (𝑖 = 1 → (𝑥↑(𝑖 − 1)) = (𝑥↑(1 − 1)))
10 oveq2 7148 . . . . . . . . 9 (𝑖 = 1 → (𝑁𝑖) = (𝑁 − 1))
1110oveq2d 7156 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − 1)))
129, 11oveq12d 7158 . . . . . . 7 (𝑖 = 1 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1312adantr 484 . . . . . 6 ((𝑖 = 1 ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1413itgeq2dv 24383 . . . . 5 (𝑖 = 1 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥)
15 id 22 . . . . . . 7 (𝑖 = 1 → 𝑖 = 1)
16 oveq2 7148 . . . . . . 7 (𝑖 = 1 → (𝑁C𝑖) = (𝑁C1))
1715, 16oveq12d 7158 . . . . . 6 (𝑖 = 1 → (𝑖 · (𝑁C𝑖)) = (1 · (𝑁C1)))
1817oveq2d 7156 . . . . 5 (𝑖 = 1 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (1 · (𝑁C1))))
1914, 18eqeq12d 2838 . . . 4 (𝑖 = 1 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1)))))
20 oveq1 7147 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑖 − 1) = (𝑚 − 1))
2120oveq2d 7156 . . . . . . . 8 (𝑖 = 𝑚 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑚 − 1)))
22 oveq2 7148 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑁𝑖) = (𝑁𝑚))
2322oveq2d 7156 . . . . . . . 8 (𝑖 = 𝑚 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑚)))
2421, 23oveq12d 7158 . . . . . . 7 (𝑖 = 𝑚 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2524adantr 484 . . . . . 6 ((𝑖 = 𝑚𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2625itgeq2dv 24383 . . . . 5 (𝑖 = 𝑚 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥)
27 id 22 . . . . . . 7 (𝑖 = 𝑚𝑖 = 𝑚)
28 oveq2 7148 . . . . . . 7 (𝑖 = 𝑚 → (𝑁C𝑖) = (𝑁C𝑚))
2927, 28oveq12d 7158 . . . . . 6 (𝑖 = 𝑚 → (𝑖 · (𝑁C𝑖)) = (𝑚 · (𝑁C𝑚)))
3029oveq2d 7156 . . . . 5 (𝑖 = 𝑚 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑚 · (𝑁C𝑚))))
3126, 30eqeq12d 2838 . . . 4 (𝑖 = 𝑚 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))))
32 oveq1 7147 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑖 − 1) = ((𝑚 + 1) − 1))
3332oveq2d 7156 . . . . . . . 8 (𝑖 = (𝑚 + 1) → (𝑥↑(𝑖 − 1)) = (𝑥↑((𝑚 + 1) − 1)))
34 oveq2 7148 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑁𝑖) = (𝑁 − (𝑚 + 1)))
3534oveq2d 7156 . . . . . . . 8 (𝑖 = (𝑚 + 1) → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − (𝑚 + 1))))
3633, 35oveq12d 7158 . . . . . . 7 (𝑖 = (𝑚 + 1) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3736adantr 484 . . . . . 6 ((𝑖 = (𝑚 + 1) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3837itgeq2dv 24383 . . . . 5 (𝑖 = (𝑚 + 1) → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥)
39 id 22 . . . . . . 7 (𝑖 = (𝑚 + 1) → 𝑖 = (𝑚 + 1))
40 oveq2 7148 . . . . . . 7 (𝑖 = (𝑚 + 1) → (𝑁C𝑖) = (𝑁C(𝑚 + 1)))
4139, 40oveq12d 7158 . . . . . 6 (𝑖 = (𝑚 + 1) → (𝑖 · (𝑁C𝑖)) = ((𝑚 + 1) · (𝑁C(𝑚 + 1))))
4241oveq2d 7156 . . . . 5 (𝑖 = (𝑚 + 1) → (1 / (𝑖 · (𝑁C𝑖))) = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
4338, 42eqeq12d 2838 . . . 4 (𝑖 = (𝑚 + 1) → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1))))))
44 oveq1 7147 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑖 − 1) = (𝑀 − 1))
4544oveq2d 7156 . . . . . . . 8 (𝑖 = 𝑀 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑀 − 1)))
46 oveq2 7148 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑁𝑖) = (𝑁𝑀))
4746oveq2d 7156 . . . . . . . 8 (𝑖 = 𝑀 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑀)))
4845, 47oveq12d 7158 . . . . . . 7 (𝑖 = 𝑀 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
4948adantr 484 . . . . . 6 ((𝑖 = 𝑀𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
5049itgeq2dv 24383 . . . . 5 (𝑖 = 𝑀 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
51 id 22 . . . . . . 7 (𝑖 = 𝑀𝑖 = 𝑀)
52 oveq2 7148 . . . . . . 7 (𝑖 = 𝑀 → (𝑁C𝑖) = (𝑁C𝑀))
5351, 52oveq12d 7158 . . . . . 6 (𝑖 = 𝑀 → (𝑖 · (𝑁C𝑖)) = (𝑀 · (𝑁C𝑀)))
5453oveq2d 7156 . . . . 5 (𝑖 = 𝑀 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑀 · (𝑁C𝑀))))
5550, 54eqeq12d 2838 . . . 4 (𝑖 = 𝑀 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀)))))
56 lcmineqlem13.3 . . . . 5 (𝜑𝑁 ∈ ℕ)
5756lcmineqlem12 39289 . . . 4 (𝜑 → ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1))))
58 elnnz1 11996 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚))
5958biimpri 231 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚) → 𝑚 ∈ ℕ)
60593adant3 1129 . . . . . . . . 9 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) → 𝑚 ∈ ℕ)
6160adantl 485 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 ∈ ℕ)
6256adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑁 ∈ ℕ)
63 simpr3 1193 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 < 𝑁)
6461, 62, 63lcmineqlem10 39287 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
65643adant3 1129 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
66 oveq2 7148 . . . . . . 7 (∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
67663ad2ant3 1132 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6865, 67eqtrd 2857 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6961, 62, 63lcmineqlem11 39288 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
70693adant3 1129 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
7168, 70eqtr4d 2860 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
72 1zzd 12001 . . . 4 (𝜑 → 1 ∈ ℤ)
7356nnzd 12074 . . . 4 (𝜑𝑁 ∈ ℤ)
7456nnge1d 11673 . . . 4 (𝜑 → 1 ≤ 𝑁)
7519, 31, 43, 55, 57, 71, 72, 73, 74fzindd 39221 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁)) → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
767, 75mpdan 686 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
771, 76syl5eq 2869 1 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114   class class class wbr 5042  (class class class)co 7140  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  cz 11969  [,]cicc 12729  cexp 13425  Ccbc 13658  citg 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-symdif 4193  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-rlim 14837  df-sum 15034  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-ovol 24066  df-vol 24067  df-mbf 24221  df-itg1 24222  df-itg2 24223  df-ibl 24224  df-itg 24225  df-0p 24272  df-limc 24467  df-dv 24468
This theorem is referenced by:  lcmineqlem15  39292  lcmineqlem16  39293
  Copyright terms: Public domain W3C validator