Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem13 Structured version   Visualization version   GIF version

Theorem lcmineqlem13 42154
Description: Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem13.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem13.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem13.3 (𝜑𝑁 ∈ ℕ)
lcmineqlem13.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem13 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lcmineqlem13
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcmineqlem13.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem13.2 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnzd 12501 . . . 4 (𝜑𝑀 ∈ ℤ)
4 nnge1 12160 . . . . 5 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
52, 4syl 17 . . . 4 (𝜑 → 1 ≤ 𝑀)
6 lcmineqlem13.4 . . . 4 (𝜑𝑀𝑁)
73, 5, 63jca 1128 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁))
8 oveq1 7359 . . . . . . . . 9 (𝑖 = 1 → (𝑖 − 1) = (1 − 1))
98oveq2d 7368 . . . . . . . 8 (𝑖 = 1 → (𝑥↑(𝑖 − 1)) = (𝑥↑(1 − 1)))
10 oveq2 7360 . . . . . . . . 9 (𝑖 = 1 → (𝑁𝑖) = (𝑁 − 1))
1110oveq2d 7368 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − 1)))
129, 11oveq12d 7370 . . . . . . 7 (𝑖 = 1 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1312adantr 480 . . . . . 6 ((𝑖 = 1 ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1413itgeq2dv 25711 . . . . 5 (𝑖 = 1 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥)
15 id 22 . . . . . . 7 (𝑖 = 1 → 𝑖 = 1)
16 oveq2 7360 . . . . . . 7 (𝑖 = 1 → (𝑁C𝑖) = (𝑁C1))
1715, 16oveq12d 7370 . . . . . 6 (𝑖 = 1 → (𝑖 · (𝑁C𝑖)) = (1 · (𝑁C1)))
1817oveq2d 7368 . . . . 5 (𝑖 = 1 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (1 · (𝑁C1))))
1914, 18eqeq12d 2749 . . . 4 (𝑖 = 1 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1)))))
20 oveq1 7359 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑖 − 1) = (𝑚 − 1))
2120oveq2d 7368 . . . . . . . 8 (𝑖 = 𝑚 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑚 − 1)))
22 oveq2 7360 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑁𝑖) = (𝑁𝑚))
2322oveq2d 7368 . . . . . . . 8 (𝑖 = 𝑚 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑚)))
2421, 23oveq12d 7370 . . . . . . 7 (𝑖 = 𝑚 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2524adantr 480 . . . . . 6 ((𝑖 = 𝑚𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2625itgeq2dv 25711 . . . . 5 (𝑖 = 𝑚 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥)
27 id 22 . . . . . . 7 (𝑖 = 𝑚𝑖 = 𝑚)
28 oveq2 7360 . . . . . . 7 (𝑖 = 𝑚 → (𝑁C𝑖) = (𝑁C𝑚))
2927, 28oveq12d 7370 . . . . . 6 (𝑖 = 𝑚 → (𝑖 · (𝑁C𝑖)) = (𝑚 · (𝑁C𝑚)))
3029oveq2d 7368 . . . . 5 (𝑖 = 𝑚 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑚 · (𝑁C𝑚))))
3126, 30eqeq12d 2749 . . . 4 (𝑖 = 𝑚 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))))
32 oveq1 7359 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑖 − 1) = ((𝑚 + 1) − 1))
3332oveq2d 7368 . . . . . . . 8 (𝑖 = (𝑚 + 1) → (𝑥↑(𝑖 − 1)) = (𝑥↑((𝑚 + 1) − 1)))
34 oveq2 7360 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑁𝑖) = (𝑁 − (𝑚 + 1)))
3534oveq2d 7368 . . . . . . . 8 (𝑖 = (𝑚 + 1) → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − (𝑚 + 1))))
3633, 35oveq12d 7370 . . . . . . 7 (𝑖 = (𝑚 + 1) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3736adantr 480 . . . . . 6 ((𝑖 = (𝑚 + 1) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3837itgeq2dv 25711 . . . . 5 (𝑖 = (𝑚 + 1) → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥)
39 id 22 . . . . . . 7 (𝑖 = (𝑚 + 1) → 𝑖 = (𝑚 + 1))
40 oveq2 7360 . . . . . . 7 (𝑖 = (𝑚 + 1) → (𝑁C𝑖) = (𝑁C(𝑚 + 1)))
4139, 40oveq12d 7370 . . . . . 6 (𝑖 = (𝑚 + 1) → (𝑖 · (𝑁C𝑖)) = ((𝑚 + 1) · (𝑁C(𝑚 + 1))))
4241oveq2d 7368 . . . . 5 (𝑖 = (𝑚 + 1) → (1 / (𝑖 · (𝑁C𝑖))) = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
4338, 42eqeq12d 2749 . . . 4 (𝑖 = (𝑚 + 1) → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1))))))
44 oveq1 7359 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑖 − 1) = (𝑀 − 1))
4544oveq2d 7368 . . . . . . . 8 (𝑖 = 𝑀 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑀 − 1)))
46 oveq2 7360 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑁𝑖) = (𝑁𝑀))
4746oveq2d 7368 . . . . . . . 8 (𝑖 = 𝑀 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑀)))
4845, 47oveq12d 7370 . . . . . . 7 (𝑖 = 𝑀 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
4948adantr 480 . . . . . 6 ((𝑖 = 𝑀𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
5049itgeq2dv 25711 . . . . 5 (𝑖 = 𝑀 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
51 id 22 . . . . . . 7 (𝑖 = 𝑀𝑖 = 𝑀)
52 oveq2 7360 . . . . . . 7 (𝑖 = 𝑀 → (𝑁C𝑖) = (𝑁C𝑀))
5351, 52oveq12d 7370 . . . . . 6 (𝑖 = 𝑀 → (𝑖 · (𝑁C𝑖)) = (𝑀 · (𝑁C𝑀)))
5453oveq2d 7368 . . . . 5 (𝑖 = 𝑀 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑀 · (𝑁C𝑀))))
5550, 54eqeq12d 2749 . . . 4 (𝑖 = 𝑀 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀)))))
56 lcmineqlem13.3 . . . . 5 (𝜑𝑁 ∈ ℕ)
5756lcmineqlem12 42153 . . . 4 (𝜑 → ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1))))
58 elnnz1 12504 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚))
5958biimpri 228 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚) → 𝑚 ∈ ℕ)
60593adant3 1132 . . . . . . . . 9 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) → 𝑚 ∈ ℕ)
6160adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 ∈ ℕ)
6256adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑁 ∈ ℕ)
63 simpr3 1197 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 < 𝑁)
6461, 62, 63lcmineqlem10 42151 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
65643adant3 1132 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
66 oveq2 7360 . . . . . . 7 (∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
67663ad2ant3 1135 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6865, 67eqtrd 2768 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6961, 62, 63lcmineqlem11 42152 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
70693adant3 1132 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
7168, 70eqtr4d 2771 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
72 1zzd 12509 . . . 4 (𝜑 → 1 ∈ ℤ)
7356nnzd 12501 . . . 4 (𝜑𝑁 ∈ ℤ)
7456nnge1d 12180 . . . 4 (𝜑 → 1 ≤ 𝑁)
7519, 31, 43, 55, 57, 71, 72, 73, 74fzindd 12581 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁)) → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
767, 75mpdan 687 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
771, 76eqtrid 2780 1 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  cz 12475  [,]cicc 13250  cexp 13970  Ccbc 14211  citg 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-symdif 4202  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549  df-itg2 25550  df-ibl 25551  df-itg 25552  df-0p 25599  df-limc 25795  df-dv 25796
This theorem is referenced by:  lcmineqlem15  42156  lcmineqlem16  42157
  Copyright terms: Public domain W3C validator