Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem13 Structured version   Visualization version   GIF version

Theorem lcmineqlem13 39593
Description: Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem13.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem13.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem13.3 (𝜑𝑁 ∈ ℕ)
lcmineqlem13.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem13 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lcmineqlem13
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcmineqlem13.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem13.2 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnzd 12110 . . . 4 (𝜑𝑀 ∈ ℤ)
4 nnge1 11687 . . . . 5 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
52, 4syl 17 . . . 4 (𝜑 → 1 ≤ 𝑀)
6 lcmineqlem13.4 . . . 4 (𝜑𝑀𝑁)
73, 5, 63jca 1126 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁))
8 oveq1 7150 . . . . . . . . 9 (𝑖 = 1 → (𝑖 − 1) = (1 − 1))
98oveq2d 7159 . . . . . . . 8 (𝑖 = 1 → (𝑥↑(𝑖 − 1)) = (𝑥↑(1 − 1)))
10 oveq2 7151 . . . . . . . . 9 (𝑖 = 1 → (𝑁𝑖) = (𝑁 − 1))
1110oveq2d 7159 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − 1)))
129, 11oveq12d 7161 . . . . . . 7 (𝑖 = 1 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1312adantr 485 . . . . . 6 ((𝑖 = 1 ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1413itgeq2dv 24466 . . . . 5 (𝑖 = 1 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥)
15 id 22 . . . . . . 7 (𝑖 = 1 → 𝑖 = 1)
16 oveq2 7151 . . . . . . 7 (𝑖 = 1 → (𝑁C𝑖) = (𝑁C1))
1715, 16oveq12d 7161 . . . . . 6 (𝑖 = 1 → (𝑖 · (𝑁C𝑖)) = (1 · (𝑁C1)))
1817oveq2d 7159 . . . . 5 (𝑖 = 1 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (1 · (𝑁C1))))
1914, 18eqeq12d 2775 . . . 4 (𝑖 = 1 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1)))))
20 oveq1 7150 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑖 − 1) = (𝑚 − 1))
2120oveq2d 7159 . . . . . . . 8 (𝑖 = 𝑚 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑚 − 1)))
22 oveq2 7151 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑁𝑖) = (𝑁𝑚))
2322oveq2d 7159 . . . . . . . 8 (𝑖 = 𝑚 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑚)))
2421, 23oveq12d 7161 . . . . . . 7 (𝑖 = 𝑚 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2524adantr 485 . . . . . 6 ((𝑖 = 𝑚𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2625itgeq2dv 24466 . . . . 5 (𝑖 = 𝑚 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥)
27 id 22 . . . . . . 7 (𝑖 = 𝑚𝑖 = 𝑚)
28 oveq2 7151 . . . . . . 7 (𝑖 = 𝑚 → (𝑁C𝑖) = (𝑁C𝑚))
2927, 28oveq12d 7161 . . . . . 6 (𝑖 = 𝑚 → (𝑖 · (𝑁C𝑖)) = (𝑚 · (𝑁C𝑚)))
3029oveq2d 7159 . . . . 5 (𝑖 = 𝑚 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑚 · (𝑁C𝑚))))
3126, 30eqeq12d 2775 . . . 4 (𝑖 = 𝑚 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))))
32 oveq1 7150 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑖 − 1) = ((𝑚 + 1) − 1))
3332oveq2d 7159 . . . . . . . 8 (𝑖 = (𝑚 + 1) → (𝑥↑(𝑖 − 1)) = (𝑥↑((𝑚 + 1) − 1)))
34 oveq2 7151 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑁𝑖) = (𝑁 − (𝑚 + 1)))
3534oveq2d 7159 . . . . . . . 8 (𝑖 = (𝑚 + 1) → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − (𝑚 + 1))))
3633, 35oveq12d 7161 . . . . . . 7 (𝑖 = (𝑚 + 1) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3736adantr 485 . . . . . 6 ((𝑖 = (𝑚 + 1) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3837itgeq2dv 24466 . . . . 5 (𝑖 = (𝑚 + 1) → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥)
39 id 22 . . . . . . 7 (𝑖 = (𝑚 + 1) → 𝑖 = (𝑚 + 1))
40 oveq2 7151 . . . . . . 7 (𝑖 = (𝑚 + 1) → (𝑁C𝑖) = (𝑁C(𝑚 + 1)))
4139, 40oveq12d 7161 . . . . . 6 (𝑖 = (𝑚 + 1) → (𝑖 · (𝑁C𝑖)) = ((𝑚 + 1) · (𝑁C(𝑚 + 1))))
4241oveq2d 7159 . . . . 5 (𝑖 = (𝑚 + 1) → (1 / (𝑖 · (𝑁C𝑖))) = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
4338, 42eqeq12d 2775 . . . 4 (𝑖 = (𝑚 + 1) → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1))))))
44 oveq1 7150 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑖 − 1) = (𝑀 − 1))
4544oveq2d 7159 . . . . . . . 8 (𝑖 = 𝑀 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑀 − 1)))
46 oveq2 7151 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑁𝑖) = (𝑁𝑀))
4746oveq2d 7159 . . . . . . . 8 (𝑖 = 𝑀 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑀)))
4845, 47oveq12d 7161 . . . . . . 7 (𝑖 = 𝑀 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
4948adantr 485 . . . . . 6 ((𝑖 = 𝑀𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
5049itgeq2dv 24466 . . . . 5 (𝑖 = 𝑀 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
51 id 22 . . . . . . 7 (𝑖 = 𝑀𝑖 = 𝑀)
52 oveq2 7151 . . . . . . 7 (𝑖 = 𝑀 → (𝑁C𝑖) = (𝑁C𝑀))
5351, 52oveq12d 7161 . . . . . 6 (𝑖 = 𝑀 → (𝑖 · (𝑁C𝑖)) = (𝑀 · (𝑁C𝑀)))
5453oveq2d 7159 . . . . 5 (𝑖 = 𝑀 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑀 · (𝑁C𝑀))))
5550, 54eqeq12d 2775 . . . 4 (𝑖 = 𝑀 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀)))))
56 lcmineqlem13.3 . . . . 5 (𝜑𝑁 ∈ ℕ)
5756lcmineqlem12 39592 . . . 4 (𝜑 → ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1))))
58 elnnz1 12032 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚))
5958biimpri 231 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚) → 𝑚 ∈ ℕ)
60593adant3 1130 . . . . . . . . 9 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) → 𝑚 ∈ ℕ)
6160adantl 486 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 ∈ ℕ)
6256adantr 485 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑁 ∈ ℕ)
63 simpr3 1194 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 < 𝑁)
6461, 62, 63lcmineqlem10 39590 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
65643adant3 1130 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
66 oveq2 7151 . . . . . . 7 (∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
67663ad2ant3 1133 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6865, 67eqtrd 2794 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6961, 62, 63lcmineqlem11 39591 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
70693adant3 1130 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
7168, 70eqtr4d 2797 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
72 1zzd 12037 . . . 4 (𝜑 → 1 ∈ ℤ)
7356nnzd 12110 . . . 4 (𝜑𝑁 ∈ ℤ)
7456nnge1d 11707 . . . 4 (𝜑 → 1 ≤ 𝑁)
7519, 31, 43, 55, 57, 71, 72, 73, 74fzindd 39528 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁)) → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
767, 75mpdan 687 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
771, 76syl5eq 2806 1 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112   class class class wbr 5025  (class class class)co 7143  0cc0 10560  1c1 10561   + caddc 10563   · cmul 10565   < clt 10698  cle 10699  cmin 10893   / cdiv 11320  cn 11659  cz 12005  [,]cicc 12767  cexp 13464  Ccbc 13697  citg 24303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cc 9880  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638  ax-addf 10639  ax-mulf 10640
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-symdif 4143  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-disj 4991  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-of 7398  df-ofr 7399  df-om 7573  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8473  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-fsupp 8852  df-fi 8893  df-sup 8924  df-inf 8925  df-oi 8992  df-dju 9348  df-card 9386  df-acn 9389  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-z 12006  df-dec 12123  df-uz 12268  df-q 12374  df-rp 12416  df-xneg 12533  df-xadd 12534  df-xmul 12535  df-ioo 12768  df-ioc 12769  df-ico 12770  df-icc 12771  df-fz 12925  df-fzo 13068  df-fl 13196  df-mod 13272  df-seq 13404  df-exp 13465  df-fac 13669  df-bc 13698  df-hash 13726  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-clim 14878  df-rlim 14879  df-sum 15076  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-starv 16623  df-sca 16624  df-vsca 16625  df-ip 16626  df-tset 16627  df-ple 16628  df-ds 16630  df-unif 16631  df-hom 16632  df-cco 16633  df-rest 16739  df-topn 16740  df-0g 16758  df-gsum 16759  df-topgen 16760  df-pt 16761  df-prds 16764  df-xrs 16818  df-qtop 16823  df-imas 16824  df-xps 16826  df-mre 16900  df-mrc 16901  df-acs 16903  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-mulg 18277  df-cntz 18499  df-cmn 18960  df-psmet 20143  df-xmet 20144  df-met 20145  df-bl 20146  df-mopn 20147  df-fbas 20148  df-fg 20149  df-cnfld 20152  df-top 21579  df-topon 21596  df-topsp 21618  df-bases 21631  df-cld 21704  df-ntr 21705  df-cls 21706  df-nei 21783  df-lp 21821  df-perf 21822  df-cn 21912  df-cnp 21913  df-haus 22000  df-cmp 22072  df-tx 22247  df-hmeo 22440  df-fil 22531  df-fm 22623  df-flim 22624  df-flf 22625  df-xms 23007  df-ms 23008  df-tms 23009  df-cncf 23564  df-ovol 24149  df-vol 24150  df-mbf 24304  df-itg1 24305  df-itg2 24306  df-ibl 24307  df-itg 24308  df-0p 24355  df-limc 24550  df-dv 24551
This theorem is referenced by:  lcmineqlem15  39595  lcmineqlem16  39596
  Copyright terms: Public domain W3C validator