Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem13 Structured version   Visualization version   GIF version

Theorem lcmineqlem13 42036
Description: Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem13.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem13.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem13.3 (𝜑𝑁 ∈ ℕ)
lcmineqlem13.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem13 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lcmineqlem13
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcmineqlem13.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem13.2 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnzd 12563 . . . 4 (𝜑𝑀 ∈ ℤ)
4 nnge1 12221 . . . . 5 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
52, 4syl 17 . . . 4 (𝜑 → 1 ≤ 𝑀)
6 lcmineqlem13.4 . . . 4 (𝜑𝑀𝑁)
73, 5, 63jca 1128 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁))
8 oveq1 7397 . . . . . . . . 9 (𝑖 = 1 → (𝑖 − 1) = (1 − 1))
98oveq2d 7406 . . . . . . . 8 (𝑖 = 1 → (𝑥↑(𝑖 − 1)) = (𝑥↑(1 − 1)))
10 oveq2 7398 . . . . . . . . 9 (𝑖 = 1 → (𝑁𝑖) = (𝑁 − 1))
1110oveq2d 7406 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − 1)))
129, 11oveq12d 7408 . . . . . . 7 (𝑖 = 1 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1312adantr 480 . . . . . 6 ((𝑖 = 1 ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1413itgeq2dv 25690 . . . . 5 (𝑖 = 1 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥)
15 id 22 . . . . . . 7 (𝑖 = 1 → 𝑖 = 1)
16 oveq2 7398 . . . . . . 7 (𝑖 = 1 → (𝑁C𝑖) = (𝑁C1))
1715, 16oveq12d 7408 . . . . . 6 (𝑖 = 1 → (𝑖 · (𝑁C𝑖)) = (1 · (𝑁C1)))
1817oveq2d 7406 . . . . 5 (𝑖 = 1 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (1 · (𝑁C1))))
1914, 18eqeq12d 2746 . . . 4 (𝑖 = 1 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1)))))
20 oveq1 7397 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑖 − 1) = (𝑚 − 1))
2120oveq2d 7406 . . . . . . . 8 (𝑖 = 𝑚 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑚 − 1)))
22 oveq2 7398 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑁𝑖) = (𝑁𝑚))
2322oveq2d 7406 . . . . . . . 8 (𝑖 = 𝑚 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑚)))
2421, 23oveq12d 7408 . . . . . . 7 (𝑖 = 𝑚 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2524adantr 480 . . . . . 6 ((𝑖 = 𝑚𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2625itgeq2dv 25690 . . . . 5 (𝑖 = 𝑚 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥)
27 id 22 . . . . . . 7 (𝑖 = 𝑚𝑖 = 𝑚)
28 oveq2 7398 . . . . . . 7 (𝑖 = 𝑚 → (𝑁C𝑖) = (𝑁C𝑚))
2927, 28oveq12d 7408 . . . . . 6 (𝑖 = 𝑚 → (𝑖 · (𝑁C𝑖)) = (𝑚 · (𝑁C𝑚)))
3029oveq2d 7406 . . . . 5 (𝑖 = 𝑚 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑚 · (𝑁C𝑚))))
3126, 30eqeq12d 2746 . . . 4 (𝑖 = 𝑚 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))))
32 oveq1 7397 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑖 − 1) = ((𝑚 + 1) − 1))
3332oveq2d 7406 . . . . . . . 8 (𝑖 = (𝑚 + 1) → (𝑥↑(𝑖 − 1)) = (𝑥↑((𝑚 + 1) − 1)))
34 oveq2 7398 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑁𝑖) = (𝑁 − (𝑚 + 1)))
3534oveq2d 7406 . . . . . . . 8 (𝑖 = (𝑚 + 1) → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − (𝑚 + 1))))
3633, 35oveq12d 7408 . . . . . . 7 (𝑖 = (𝑚 + 1) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3736adantr 480 . . . . . 6 ((𝑖 = (𝑚 + 1) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3837itgeq2dv 25690 . . . . 5 (𝑖 = (𝑚 + 1) → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥)
39 id 22 . . . . . . 7 (𝑖 = (𝑚 + 1) → 𝑖 = (𝑚 + 1))
40 oveq2 7398 . . . . . . 7 (𝑖 = (𝑚 + 1) → (𝑁C𝑖) = (𝑁C(𝑚 + 1)))
4139, 40oveq12d 7408 . . . . . 6 (𝑖 = (𝑚 + 1) → (𝑖 · (𝑁C𝑖)) = ((𝑚 + 1) · (𝑁C(𝑚 + 1))))
4241oveq2d 7406 . . . . 5 (𝑖 = (𝑚 + 1) → (1 / (𝑖 · (𝑁C𝑖))) = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
4338, 42eqeq12d 2746 . . . 4 (𝑖 = (𝑚 + 1) → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1))))))
44 oveq1 7397 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑖 − 1) = (𝑀 − 1))
4544oveq2d 7406 . . . . . . . 8 (𝑖 = 𝑀 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑀 − 1)))
46 oveq2 7398 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑁𝑖) = (𝑁𝑀))
4746oveq2d 7406 . . . . . . . 8 (𝑖 = 𝑀 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑀)))
4845, 47oveq12d 7408 . . . . . . 7 (𝑖 = 𝑀 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
4948adantr 480 . . . . . 6 ((𝑖 = 𝑀𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
5049itgeq2dv 25690 . . . . 5 (𝑖 = 𝑀 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
51 id 22 . . . . . . 7 (𝑖 = 𝑀𝑖 = 𝑀)
52 oveq2 7398 . . . . . . 7 (𝑖 = 𝑀 → (𝑁C𝑖) = (𝑁C𝑀))
5351, 52oveq12d 7408 . . . . . 6 (𝑖 = 𝑀 → (𝑖 · (𝑁C𝑖)) = (𝑀 · (𝑁C𝑀)))
5453oveq2d 7406 . . . . 5 (𝑖 = 𝑀 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑀 · (𝑁C𝑀))))
5550, 54eqeq12d 2746 . . . 4 (𝑖 = 𝑀 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀)))))
56 lcmineqlem13.3 . . . . 5 (𝜑𝑁 ∈ ℕ)
5756lcmineqlem12 42035 . . . 4 (𝜑 → ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1))))
58 elnnz1 12566 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚))
5958biimpri 228 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚) → 𝑚 ∈ ℕ)
60593adant3 1132 . . . . . . . . 9 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) → 𝑚 ∈ ℕ)
6160adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 ∈ ℕ)
6256adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑁 ∈ ℕ)
63 simpr3 1197 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 < 𝑁)
6461, 62, 63lcmineqlem10 42033 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
65643adant3 1132 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
66 oveq2 7398 . . . . . . 7 (∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
67663ad2ant3 1135 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6865, 67eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6961, 62, 63lcmineqlem11 42034 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
70693adant3 1132 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
7168, 70eqtr4d 2768 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
72 1zzd 12571 . . . 4 (𝜑 → 1 ∈ ℤ)
7356nnzd 12563 . . . 4 (𝜑𝑁 ∈ ℤ)
7456nnge1d 12241 . . . 4 (𝜑 → 1 ≤ 𝑁)
7519, 31, 43, 55, 57, 71, 72, 73, 74fzindd 12643 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁)) → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
767, 75mpdan 687 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
771, 76eqtrid 2777 1 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cz 12536  [,]cicc 13316  cexp 14033  Ccbc 14274  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  lcmineqlem15  42038  lcmineqlem16  42039
  Copyright terms: Public domain W3C validator