Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem13 Structured version   Visualization version   GIF version

Theorem lcmineqlem13 41753
Description: Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem13.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem13.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem13.3 (𝜑𝑁 ∈ ℕ)
lcmineqlem13.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem13 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lcmineqlem13
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcmineqlem13.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem13.2 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnzd 12631 . . . 4 (𝜑𝑀 ∈ ℤ)
4 nnge1 12286 . . . . 5 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
52, 4syl 17 . . . 4 (𝜑 → 1 ≤ 𝑀)
6 lcmineqlem13.4 . . . 4 (𝜑𝑀𝑁)
73, 5, 63jca 1125 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁))
8 oveq1 7423 . . . . . . . . 9 (𝑖 = 1 → (𝑖 − 1) = (1 − 1))
98oveq2d 7432 . . . . . . . 8 (𝑖 = 1 → (𝑥↑(𝑖 − 1)) = (𝑥↑(1 − 1)))
10 oveq2 7424 . . . . . . . . 9 (𝑖 = 1 → (𝑁𝑖) = (𝑁 − 1))
1110oveq2d 7432 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − 1)))
129, 11oveq12d 7434 . . . . . . 7 (𝑖 = 1 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1312adantr 479 . . . . . 6 ((𝑖 = 1 ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))))
1413itgeq2dv 25799 . . . . 5 (𝑖 = 1 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥)
15 id 22 . . . . . . 7 (𝑖 = 1 → 𝑖 = 1)
16 oveq2 7424 . . . . . . 7 (𝑖 = 1 → (𝑁C𝑖) = (𝑁C1))
1715, 16oveq12d 7434 . . . . . 6 (𝑖 = 1 → (𝑖 · (𝑁C𝑖)) = (1 · (𝑁C1)))
1817oveq2d 7432 . . . . 5 (𝑖 = 1 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (1 · (𝑁C1))))
1914, 18eqeq12d 2742 . . . 4 (𝑖 = 1 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1)))))
20 oveq1 7423 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑖 − 1) = (𝑚 − 1))
2120oveq2d 7432 . . . . . . . 8 (𝑖 = 𝑚 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑚 − 1)))
22 oveq2 7424 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑁𝑖) = (𝑁𝑚))
2322oveq2d 7432 . . . . . . . 8 (𝑖 = 𝑚 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑚)))
2421, 23oveq12d 7434 . . . . . . 7 (𝑖 = 𝑚 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2524adantr 479 . . . . . 6 ((𝑖 = 𝑚𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))))
2625itgeq2dv 25799 . . . . 5 (𝑖 = 𝑚 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥)
27 id 22 . . . . . . 7 (𝑖 = 𝑚𝑖 = 𝑚)
28 oveq2 7424 . . . . . . 7 (𝑖 = 𝑚 → (𝑁C𝑖) = (𝑁C𝑚))
2927, 28oveq12d 7434 . . . . . 6 (𝑖 = 𝑚 → (𝑖 · (𝑁C𝑖)) = (𝑚 · (𝑁C𝑚)))
3029oveq2d 7432 . . . . 5 (𝑖 = 𝑚 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑚 · (𝑁C𝑚))))
3126, 30eqeq12d 2742 . . . 4 (𝑖 = 𝑚 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))))
32 oveq1 7423 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑖 − 1) = ((𝑚 + 1) − 1))
3332oveq2d 7432 . . . . . . . 8 (𝑖 = (𝑚 + 1) → (𝑥↑(𝑖 − 1)) = (𝑥↑((𝑚 + 1) − 1)))
34 oveq2 7424 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (𝑁𝑖) = (𝑁 − (𝑚 + 1)))
3534oveq2d 7432 . . . . . . . 8 (𝑖 = (𝑚 + 1) → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁 − (𝑚 + 1))))
3633, 35oveq12d 7434 . . . . . . 7 (𝑖 = (𝑚 + 1) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3736adantr 479 . . . . . 6 ((𝑖 = (𝑚 + 1) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))))
3837itgeq2dv 25799 . . . . 5 (𝑖 = (𝑚 + 1) → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥)
39 id 22 . . . . . . 7 (𝑖 = (𝑚 + 1) → 𝑖 = (𝑚 + 1))
40 oveq2 7424 . . . . . . 7 (𝑖 = (𝑚 + 1) → (𝑁C𝑖) = (𝑁C(𝑚 + 1)))
4139, 40oveq12d 7434 . . . . . 6 (𝑖 = (𝑚 + 1) → (𝑖 · (𝑁C𝑖)) = ((𝑚 + 1) · (𝑁C(𝑚 + 1))))
4241oveq2d 7432 . . . . 5 (𝑖 = (𝑚 + 1) → (1 / (𝑖 · (𝑁C𝑖))) = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
4338, 42eqeq12d 2742 . . . 4 (𝑖 = (𝑚 + 1) → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1))))))
44 oveq1 7423 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑖 − 1) = (𝑀 − 1))
4544oveq2d 7432 . . . . . . . 8 (𝑖 = 𝑀 → (𝑥↑(𝑖 − 1)) = (𝑥↑(𝑀 − 1)))
46 oveq2 7424 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑁𝑖) = (𝑁𝑀))
4746oveq2d 7432 . . . . . . . 8 (𝑖 = 𝑀 → ((1 − 𝑥)↑(𝑁𝑖)) = ((1 − 𝑥)↑(𝑁𝑀)))
4845, 47oveq12d 7434 . . . . . . 7 (𝑖 = 𝑀 → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
4948adantr 479 . . . . . 6 ((𝑖 = 𝑀𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) = ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))))
5049itgeq2dv 25799 . . . . 5 (𝑖 = 𝑀 → ∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
51 id 22 . . . . . . 7 (𝑖 = 𝑀𝑖 = 𝑀)
52 oveq2 7424 . . . . . . 7 (𝑖 = 𝑀 → (𝑁C𝑖) = (𝑁C𝑀))
5351, 52oveq12d 7434 . . . . . 6 (𝑖 = 𝑀 → (𝑖 · (𝑁C𝑖)) = (𝑀 · (𝑁C𝑀)))
5453oveq2d 7432 . . . . 5 (𝑖 = 𝑀 → (1 / (𝑖 · (𝑁C𝑖))) = (1 / (𝑀 · (𝑁C𝑀))))
5550, 54eqeq12d 2742 . . . 4 (𝑖 = 𝑀 → (∫(0[,]1)((𝑥↑(𝑖 − 1)) · ((1 − 𝑥)↑(𝑁𝑖))) d𝑥 = (1 / (𝑖 · (𝑁C𝑖))) ↔ ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀)))))
56 lcmineqlem13.3 . . . . 5 (𝜑𝑁 ∈ ℕ)
5756lcmineqlem12 41752 . . . 4 (𝜑 → ∫(0[,]1)((𝑥↑(1 − 1)) · ((1 − 𝑥)↑(𝑁 − 1))) d𝑥 = (1 / (1 · (𝑁C1))))
58 elnnz1 12634 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚))
5958biimpri 227 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚) → 𝑚 ∈ ℕ)
60593adant3 1129 . . . . . . . . 9 ((𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) → 𝑚 ∈ ℕ)
6160adantl 480 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 ∈ ℕ)
6256adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑁 ∈ ℕ)
63 simpr3 1193 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → 𝑚 < 𝑁)
6461, 62, 63lcmineqlem10 41750 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
65643adant3 1129 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥))
66 oveq2 7424 . . . . . . 7 (∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
67663ad2ant3 1132 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ((𝑚 / (𝑁𝑚)) · ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6865, 67eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
6961, 62, 63lcmineqlem11 41751 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁)) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
70693adant3 1129 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))) = ((𝑚 / (𝑁𝑚)) · (1 / (𝑚 · (𝑁C𝑚)))))
7168, 70eqtr4d 2769 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 1 ≤ 𝑚𝑚 < 𝑁) ∧ ∫(0[,]1)((𝑥↑(𝑚 − 1)) · ((1 − 𝑥)↑(𝑁𝑚))) d𝑥 = (1 / (𝑚 · (𝑁C𝑚)))) → ∫(0[,]1)((𝑥↑((𝑚 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑚 + 1)))) d𝑥 = (1 / ((𝑚 + 1) · (𝑁C(𝑚 + 1)))))
72 1zzd 12639 . . . 4 (𝜑 → 1 ∈ ℤ)
7356nnzd 12631 . . . 4 (𝜑𝑁 ∈ ℤ)
7456nnge1d 12306 . . . 4 (𝜑 → 1 ≤ 𝑁)
7519, 31, 43, 55, 57, 71, 72, 73, 74fzindd 12710 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀𝑀𝑁)) → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
767, 75mpdan 685 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = (1 / (𝑀 · (𝑁C𝑀))))
771, 76eqtrid 2778 1 (𝜑𝐹 = (1 / (𝑀 · (𝑁C𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5145  (class class class)co 7416  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154   < clt 11289  cle 11290  cmin 11485   / cdiv 11912  cn 12258  cz 12604  [,]cicc 13375  cexp 14075  Ccbc 14314  citg 25635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cc 10469  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-symdif 4241  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-disj 5111  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-dju 9937  df-card 9975  df-acn 9978  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-ioo 13376  df-ioc 13377  df-ico 13378  df-icc 13379  df-fz 13533  df-fzo 13676  df-fl 13806  df-mod 13884  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485  df-rlim 15486  df-sum 15686  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-xrs 17512  df-qtop 17517  df-imas 17518  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19058  df-cntz 19307  df-cmn 19776  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-fbas 21336  df-fg 21337  df-cnfld 21340  df-top 22884  df-topon 22901  df-topsp 22923  df-bases 22937  df-cld 23011  df-ntr 23012  df-cls 23013  df-nei 23090  df-lp 23128  df-perf 23129  df-cn 23219  df-cnp 23220  df-haus 23307  df-cmp 23379  df-tx 23554  df-hmeo 23747  df-fil 23838  df-fm 23930  df-flim 23931  df-flf 23932  df-xms 24314  df-ms 24315  df-tms 24316  df-cncf 24886  df-ovol 25481  df-vol 25482  df-mbf 25636  df-itg1 25637  df-itg2 25638  df-ibl 25639  df-itg 25640  df-0p 25687  df-limc 25883  df-dv 25884
This theorem is referenced by:  lcmineqlem15  41755  lcmineqlem16  41756
  Copyright terms: Public domain W3C validator