Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1 Structured version   Visualization version   GIF version

Theorem aks6d1c1 42157
Description: Claim 1 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 30-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1.2 𝑆 = (Poly1𝐾)
aks6d1c1.3 𝐵 = (Base‘𝑆)
aks6d1c1.4 𝑋 = (var1𝐾)
aks6d1c1.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1.7 = (.g𝑉)
aks6d1c1.8 𝐶 = (algSc‘𝑆)
aks6d1c1.9 𝐷 = (.g𝑊)
aks6d1c1.10 𝑃 = (chr‘𝐾)
aks6d1c1.11 𝑂 = (eval1𝐾)
aks6d1c1.12 + = (+g𝑆)
aks6d1c1.13 (𝜑𝐾 ∈ Field)
aks6d1c1.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1.16 (𝜑𝑁 ∈ ℕ)
aks6d1c1.17 (𝜑𝑃𝑁)
aks6d1c1.18 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1.19 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c1.20 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c1.21 (𝜑𝐴 ∈ ℕ0)
aks6d1c1.22 (𝜑𝑈 ∈ ℕ0)
aks6d1c1.23 (𝜑𝐿 ∈ ℕ0)
aks6d1c1.24 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
aks6d1c1.25 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c1.26 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1 (𝜑𝐸 (𝐺𝐹))
Distinct variable groups:   + ,𝑎   + ,𝑒,𝑓,𝑦   + ,𝑔,𝑖   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   ,𝑎   𝑦,   𝐴,𝑎   𝐴,𝑔,𝑖   𝑦,𝐴,𝑖   𝑥,𝐴   𝐵,𝑒,𝑓   𝐶,𝑎   𝐶,𝑒,𝑓,𝑦   𝐶,𝑔,𝑖   𝐷,𝑒,𝑓,𝑦   𝐷,𝑔,𝑖   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑔,𝐹,𝑖   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   𝑥,𝐾   𝑒,𝐿,𝑓,𝑦   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑈,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝑒,𝑊,𝑓,𝑦   𝑔,𝑊,𝑖   𝑋,𝑎   𝑒,𝑋,𝑓,𝑦   𝑔,𝑋,𝑖   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑒,𝑓)   𝐵(𝑥,𝑦,𝑔,𝑖,𝑎)   𝐶(𝑥)   𝐷(𝑥,𝑎)   𝑃(𝑔,𝑖,𝑎)   + (𝑥)   (𝑥,𝑒,𝑓,𝑔,𝑖)   𝑅(𝑔,𝑖,𝑎)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝑈(𝑥,𝑔,𝑖,𝑎)   𝐸(𝑥,𝑔,𝑖,𝑎)   (𝑔,𝑖,𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝐿(𝑥,𝑔,𝑖,𝑎)   𝑁(𝑔,𝑖)   𝑂(𝑥,𝑔,𝑖,𝑎)   𝑉(𝑔,𝑖,𝑎)   𝑊(𝑥,𝑎)   𝑋(𝑥)

Proof of Theorem aks6d1c1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1.21 . . . . 5 (𝜑𝐴 ∈ ℕ0)
21nn0zd 12494 . . . 4 (𝜑𝐴 ∈ ℤ)
31nn0ge0d 12445 . . . 4 (𝜑 → 0 ≤ 𝐴)
41nn0red 12443 . . . . 5 (𝜑𝐴 ∈ ℝ)
54leidd 11683 . . . 4 (𝜑𝐴𝐴)
62, 3, 53jca 1128 . . 3 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴))
7 oveq2 7354 . . . . . . . 8 ( = 0 → (0...) = (0...0))
87mpteq1d 5179 . . . . . . 7 ( = 0 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
98oveq2d 7362 . . . . . 6 ( = 0 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
109breq2d 5101 . . . . 5 ( = 0 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
11 oveq2 7354 . . . . . . . 8 ( = 𝑗 → (0...) = (0...𝑗))
1211mpteq1d 5179 . . . . . . 7 ( = 𝑗 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1312oveq2d 7362 . . . . . 6 ( = 𝑗 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1413breq2d 5101 . . . . 5 ( = 𝑗 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
15 oveq2 7354 . . . . . . . 8 ( = (𝑗 + 1) → (0...) = (0...(𝑗 + 1)))
1615mpteq1d 5179 . . . . . . 7 ( = (𝑗 + 1) → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1716oveq2d 7362 . . . . . 6 ( = (𝑗 + 1) → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1817breq2d 5101 . . . . 5 ( = (𝑗 + 1) → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
19 oveq2 7354 . . . . . . . 8 ( = 𝐴 → (0...) = (0...𝐴))
2019mpteq1d 5179 . . . . . . 7 ( = 𝐴 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
2120oveq2d 7362 . . . . . 6 ( = 𝐴 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
2221breq2d 5101 . . . . 5 ( = 𝐴 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
23 aks6d1c1.1 . . . . . . . 8 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
24 aks6d1c1.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
25 aks6d1c1.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
26 aks6d1c1.4 . . . . . . . 8 𝑋 = (var1𝐾)
27 aks6d1c1.5 . . . . . . . 8 𝑊 = (mulGrp‘𝑆)
28 aks6d1c1.6 . . . . . . . 8 𝑉 = (mulGrp‘𝐾)
29 aks6d1c1.7 . . . . . . . 8 = (.g𝑉)
30 aks6d1c1.8 . . . . . . . 8 𝐶 = (algSc‘𝑆)
31 aks6d1c1.9 . . . . . . . 8 𝐷 = (.g𝑊)
32 aks6d1c1.10 . . . . . . . 8 𝑃 = (chr‘𝐾)
33 aks6d1c1.11 . . . . . . . 8 𝑂 = (eval1𝐾)
34 aks6d1c1.12 . . . . . . . 8 + = (+g𝑆)
35 aks6d1c1.13 . . . . . . . 8 (𝜑𝐾 ∈ Field)
36 aks6d1c1.14 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
37 aks6d1c1.15 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
38 aks6d1c1.16 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
39 aks6d1c1.17 . . . . . . . 8 (𝜑𝑃𝑁)
40 aks6d1c1.18 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑅) = 1)
41 aks6d1c1.24 . . . . . . . . . . . 12 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
42 prmnn 16585 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4336, 42syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
44 aks6d1c1.22 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℕ0)
4543, 44nnexpcld 14152 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑈) ∈ ℕ)
4643nnzd 12495 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℤ)
4743nnne0d 12175 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
4838nnzd 12495 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
49 dvdsval2 16166 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5139, 50mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
5238nnred 12140 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ)
5343nnred 12140 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
5438nngt0d 12174 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑁)
5543nngt0d 12174 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑃)
5652, 53, 54, 55divgt0d 12057 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (𝑁 / 𝑃))
5751, 56jca 511 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
58 elnnz 12478 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
5957, 58sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
60 aks6d1c1.23 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℕ0)
6159, 60nnexpcld 14152 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 / 𝑃)↑𝐿) ∈ ℕ)
6245, 61nnmulcld 12178 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) ∈ ℕ)
6341, 62eqeltrid 2835 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ)
6423, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 63aks6d1c1p7 42154 . . . . . . . . . 10 (𝜑𝐸 𝑋)
6535fldcrngd 20657 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
6624ply1crng 22111 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ CRing)
68 crngring 20163 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
69 ringcmn 20200 . . . . . . . . . . . . . 14 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
7068, 69syl 17 . . . . . . . . . . . . 13 (𝑆 ∈ CRing → 𝑆 ∈ CMnd)
7167, 70syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ CMnd)
72 cmnmnd 19709 . . . . . . . . . . . 12 (𝑆 ∈ CMnd → 𝑆 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Mnd)
74 crngring 20163 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
7565, 74syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
76 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
7726, 24, 76vr1cl 22130 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘𝑆))
7875, 77syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑆))
79 eqid 2731 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
8076, 34, 79mndrid 18663 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆)) → (𝑋 + (0g𝑆)) = 𝑋)
8173, 78, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 + (0g𝑆)) = 𝑋)
8264, 81breqtrrd 5117 . . . . . . . . 9 (𝜑𝐸 (𝑋 + (0g𝑆)))
83 eqid 2731 . . . . . . . . . . . . . 14 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
84 eqid 2731 . . . . . . . . . . . . . 14 (0g𝐾) = (0g𝐾)
8583, 84zrh0 21450 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8675, 85syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8786fveq2d 6826 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (𝐶‘(0g𝐾)))
8824, 30, 84, 79, 75ply1ascl0 22167 . . . . . . . . . . 11 (𝜑 → (𝐶‘(0g𝐾)) = (0g𝑆))
8987, 88eqtrd 2766 . . . . . . . . . 10 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (0g𝑆))
9089oveq2d 7362 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) = (𝑋 + (0g𝑆)))
9182, 90breqtrrd 5117 . . . . . . . 8 (𝜑𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
92 aks6d1c1.19 . . . . . . . . 9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
93 0zd 12480 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
94 0red 11115 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
9594leidd 11683 . . . . . . . . . 10 (𝜑 → 0 ≤ 0)
9693, 2, 93, 95, 3elfzd 13415 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝐴))
9792, 96ffvelcdmd 7018 . . . . . . . 8 (𝜑 → (𝐹‘0) ∈ ℕ0)
9823, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 91, 97aks6d1c1p6 42155 . . . . . . 7 (𝜑𝐸 ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
9927crngmgp 20159 . . . . . . . . . 10 (𝑆 ∈ CRing → 𝑊 ∈ CMnd)
10067, 99syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ CMnd)
101100cmnmndd 19716 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
102 0z 12479 . . . . . . . . 9 0 ∈ ℤ
103102a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
104 eqid 2731 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
105 0le0 12226 . . . . . . . . . . . 12 0 ≤ 0
106105a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
107103, 2, 103, 106, 3elfzd 13415 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝐴))
10892, 107ffvelcdmd 7018 . . . . . . . . 9 (𝜑 → (𝐹‘0) ∈ ℕ0)
10983zrhrhm 21448 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
11075, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
111 zringbas 21390 . . . . . . . . . . . . . . 15 ℤ = (Base‘ℤring)
112 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
113111, 112rhmf 20402 . . . . . . . . . . . . . 14 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
114110, 113syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
115114, 93ffvelcdmd 7018 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾))
11624, 30, 112, 76ply1sclcl 22200 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11775, 115, 116syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11876, 34mndcl 18650 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
11973, 78, 117, 118syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
12027, 76mgpbas 20063 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑊)
121119, 120eleqtrdi 2841 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑊))
122104, 31, 101, 108, 121mulgnn0cld 19008 . . . . . . . 8 (𝜑 → ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊))
123 fveq2 6822 . . . . . . . . . 10 (𝑖 = 0 → (𝐹𝑖) = (𝐹‘0))
124 2fveq3 6827 . . . . . . . . . . 11 (𝑖 = 0 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
125124oveq2d 7362 . . . . . . . . . 10 (𝑖 = 0 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
126123, 125oveq12d 7364 . . . . . . . . 9 (𝑖 = 0 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
127104, 126gsumsn 19866 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 0 ∈ ℤ ∧ ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
128101, 103, 122, 127syl3anc 1373 . . . . . . 7 (𝜑 → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
12998, 128breqtrrd 5117 . . . . . 6 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
130 fzsn 13466 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
131102, 130ax-mp 5 . . . . . . . . 9 (0...0) = {0}
132131a1i 11 . . . . . . . 8 (𝜑 → (0...0) = {0})
133132mpteq1d 5179 . . . . . . 7 (𝜑 → (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
134133oveq2d 7362 . . . . . 6 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
135129, 134breqtrrd 5117 . . . . 5 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
136353ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Field)
137363ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃 ∈ ℙ)
138373ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑅 ∈ ℕ)
139403ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑁 gcd 𝑅) = 1)
140393ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃𝑁)
141 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
142 nfcv 2894 . . . . . . . . . . 11 𝑘((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))
143 nfcv 2894 . . . . . . . . . . 11 𝑖((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
144 fveq2 6822 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
145 2fveq3 6827 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘𝑘)))
146145oveq2d 7362 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
147144, 146oveq12d 7364 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
148142, 143, 147cbvmpt 5191 . . . . . . . . . 10 (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
149148oveq2i 7357 . . . . . . . . 9 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
150149a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
151141, 150breqtrd 5115 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
15235adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Field)
15336adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 ∈ ℙ)
15437adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑅 ∈ ℕ)
15538adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 ∈ ℕ)
15639adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃𝑁)
15740adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 gcd 𝑅) = 1)
15841a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)))
15937nnzd 12495 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℤ)
16051, 159, 603jca 1128 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0))
161159, 51, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
16248, 159jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
163 gcdcom 16424 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
165 eqeq1 2735 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
166164, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
167166pm5.74i 271 . . . . . . . . . . . . . . . . . 18 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
16840, 167mpbi 230 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑁) = 1)
16952recnd 11140 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
17053recnd 11140 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℂ)
17194, 54gtned 11248 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ≠ 0)
172169, 169, 170, 171, 47divdiv2d 11929 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = ((𝑁 · 𝑃) / 𝑁))
173169, 170mulcomd 11133 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
174173oveq1d 7361 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = ((𝑃 · 𝑁) / 𝑁))
175170, 169, 169, 171, 171divdiv2d 11929 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = ((𝑃 · 𝑁) / 𝑁))
176175eqcomd 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑃 · 𝑁) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
177174, 176eqtrd 2766 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
178169, 171dividd 11895 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑁 / 𝑁) = 1)
179178oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = (𝑃 / 1))
180170div1d 11889 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / 1) = 𝑃)
181179, 180eqtrd 2766 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = 𝑃)
182181, 46eqeltrd 2831 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑃 / (𝑁 / 𝑁)) ∈ ℤ)
183177, 182eqeltrd 2831 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 · 𝑃) / 𝑁) ∈ ℤ)
184172, 183eqeltrd 2831 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
18594, 56gtned 11248 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / 𝑃) ≠ 0)
186 dvdsval2 16166 . . . . . . . . . . . . . . . . . . 19 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
18751, 185, 48, 186syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
188184, 187mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
189168, 188jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
190 rpdvds 16571 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
191161, 189, 190syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
192159, 51jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ))
193 gcdcom 16424 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ) → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
194192, 193syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
195 eqeq1 2735 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
196194, 195syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
197196pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1) ↔ (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1))
198191, 197mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1)
199 rpexp1i 16634 . . . . . . . . . . . . . . 15 (((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (((𝑁 / 𝑃) gcd 𝑅) = 1 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1))
200199imp 406 . . . . . . . . . . . . . 14 ((((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) ∧ ((𝑁 / 𝑃) gcd 𝑅) = 1) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
201160, 198, 200syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
202201adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
203 eqid 2731 . . . . . . . . . . . . . 14 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
204 simpr1 1195 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℤ)
205204peano2zd 12580 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ ℤ)
20623, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205aks6d1c1p2 42150 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
20744adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑈 ∈ ℕ0)
208159, 46, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
209168, 39jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
210 rpdvds 16571 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
211208, 209, 210syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd 𝑃) = 1)
212159, 46jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ))
213 gcdcom 16424 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
214212, 213syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
215 eqeq1 2735 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd 𝑃) = (𝑃 gcd 𝑅) → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
216214, 215syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
217216pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd 𝑃) = 1) ↔ (𝜑 → (𝑃 gcd 𝑅) = 1))
218211, 217mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑅) = 1)
219218adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃 gcd 𝑅) = 1)
22023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 206, 207, 219aks6d1c1p8 42156 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃𝑈) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
221 2fveq3 6827 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
222221oveq2d 7362 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
223222breq2d 5101 . . . . . . . . . . . . . . 15 (𝑎 = (𝑗 + 1) → (𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) ↔ 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
224 aks6d1c1.25 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
22523, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 38aks6d1c1p7 42154 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑁 𝑋)
226225, 81breqtrrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 (𝑋 + (0g𝑆)))
227226, 90breqtrrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
228227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
229 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑎 = 0) → 𝑎 = 0)
230229fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑎 = 0) → ((ℤRHom‘𝐾)‘𝑎) = ((ℤRHom‘𝐾)‘0))
231230fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑎 = 0) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
232231oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
233228, 232breqtrrd 5117 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
234233ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
235234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
236 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
237 1cnd 11107 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 1 ∈ ℂ)
238237addlidd 11314 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (0 + 1) = 1)
239238oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((0 + 1)...𝐴) = (1...𝐴))
240239eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) ↔ 𝑎 ∈ (1...𝐴)))
241240imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
242236, 241mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
243235, 242jaod 859 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
2442, 3jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
245 eluz1 12736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℤ → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
24693, 245syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
247244, 246mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ (ℤ‘0))
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 𝐴 ∈ (ℤ‘0))
249 elfzp12 13503 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (ℤ‘0) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
250248, 249syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
251250imbi1d 341 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
252243, 251mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
253252ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
254253ralimdv2 3141 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
255224, 254mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
256255adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
257 0zd 12480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ∈ ℤ)
2582adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐴 ∈ ℤ)
259204zred 12577 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℝ)
260 1red 11113 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 1 ∈ ℝ)
261 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 𝑗)
262 0le1 11640 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
263262a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 1)
264259, 260, 261, 263addge0d 11693 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ (𝑗 + 1))
265 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 < 𝐴)
266204, 258zltp1led 42020 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
267265, 266mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ≤ 𝐴)
268257, 258, 205, 264, 267elfzd 13415 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ (0...𝐴))
269223, 256, 268rspcdva 3573 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
270 aks6d1c1.26 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
271270adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
27223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205, 269, 271aks6d1c1p3 42151 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 / 𝑃) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27360adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐿 ∈ ℕ0)
274198adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃) gcd 𝑅) = 1)
27523, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 272, 273, 274aks6d1c1p8 42156 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃)↑𝐿) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27623, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 152, 153, 154, 202, 156, 220, 275aks6d1c1p5 42153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
277158, 276eqbrtrd 5111 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27892adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐹:(0...𝐴)⟶ℕ0)
279278, 268ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐹‘(𝑗 + 1)) ∈ ℕ0)
28023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 277, 279aks6d1c1p6 42155 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
281101adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑊 ∈ Mnd)
282 ovexd 7381 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ V)
28373adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑆 ∈ Mnd)
28478adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑋 ∈ (Base‘𝑆))
28575adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Ring)
286114adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
287286, 205ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾))
28824, 30, 112, 76ply1sclcl 22200 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
289285, 287, 288syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
29076, 34mndcl 18650 . . . . . . . . . . . . 13 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
291283, 284, 289, 290syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
292291, 120eleqtrdi 2841 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑊))
293104, 31, 281, 279, 292mulgnn0cld 19008 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊))
294 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
295 2fveq3 6827 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
296295oveq2d 7362 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
297294, 296oveq12d 7364 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
298104, 297gsumsn 19866 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ (𝑗 + 1) ∈ V ∧ ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
299281, 282, 293, 298syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
300280, 299breqtrrd 5117 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
3013003adant3 1132 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
30223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 136, 137, 138, 139, 140, 151, 301aks6d1c1p4 42152 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
303142, 143, 147cbvmpt 5191 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
304303a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
305304oveq2d 7362 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
306 eqid 2731 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3071003ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ CMnd)
308 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℤ)
309 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 0 ≤ 𝑗)
310308, 309jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
311 elnn0z 12481 . . . . . . . . 9 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
312310, 311sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℕ0)
3132813adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ Mnd)
314313adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑊 ∈ Mnd)
315923ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐹:(0...𝐴)⟶ℕ0)
316315adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐹:(0...𝐴)⟶ℕ0)
317 0zd 12480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ∈ ℤ)
31823ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐴 ∈ ℤ)
319318adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℤ)
320 elfzelz 13424 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ∈ ℤ)
321320adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℤ)
322 elfzle1 13427 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 0 ≤ 𝑘)
323322adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ≤ 𝑘)
324321zred 12577 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℝ)
325308adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℤ)
326325zred 12577 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℝ)
327 1red 11113 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 1 ∈ ℝ)
328326, 327readdcld 11141 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
329319zred 12577 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℝ)
330 elfzle2 13428 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
331330adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
332 simpl23 1254 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 < 𝐴)
333325, 319zltp1led 42020 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
334332, 333mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝐴)
335324, 328, 329, 331, 334letrd 11270 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘𝐴)
336317, 319, 321, 323, 335elfzd 13415 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ (0...𝐴))
337316, 336ffvelcdmd 7018 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐹𝑘) ∈ ℕ0)
3382833adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑆 ∈ Mnd)
339338adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑆 ∈ Mnd)
3402843adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑋 ∈ (Base‘𝑆))
341340adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑋 ∈ (Base‘𝑆))
3422853adant3 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Ring)
343342adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐾 ∈ Ring)
344343, 109, 1133syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
345344, 321ffvelcdmd 7018 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾))
34624, 30, 112, 76ply1sclcl 22200 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
347343, 345, 346syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
34876, 34mndcl 18650 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
349339, 341, 347, 348syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
350349, 120eleqtrdi 2841 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑊))
351104, 31, 314, 337, 350mulgnn0cld 19008 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) ∈ (Base‘𝑊))
352104, 306, 307, 312, 351gsummptfzsplit 19844 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
353305, 352eqtrd 2766 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
354302, 353breqtrrd 5117 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
35510, 14, 18, 22, 135, 354, 93, 2, 3fzindd 12575 . . . 4 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴)) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
356355ex 412 . . 3 (𝜑 → ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
3576, 356mpd 15 . 2 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
358 aks6d1c1.20 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
359358a1i 11 . . 3 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
360 simplr 768 . . . . . . 7 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝐹)
361360fveq1d 6824 . . . . . 6 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝐹𝑖))
362361oveq1d 7361 . . . . 5 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))
363362mpteq2dva 5182 . . . 4 ((𝜑𝑔 = 𝐹) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
364363oveq2d 7362 . . 3 ((𝜑𝑔 = 𝐹) → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
365 nn0ex 12387 . . . . . 6 0 ∈ V
366365a1i 11 . . . . 5 (𝜑 → ℕ0 ∈ V)
367 ovexd 7381 . . . . 5 (𝜑 → (0...𝐴) ∈ V)
368366, 367elmapd 8764 . . . 4 (𝜑 → (𝐹 ∈ (ℕ0m (0...𝐴)) ↔ 𝐹:(0...𝐴)⟶ℕ0))
36992, 368mpbird 257 . . 3 (𝜑𝐹 ∈ (ℕ0m (0...𝐴)))
370 ovexd 7381 . . 3 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
371359, 364, 369, 370fvmptd 6936 . 2 (𝜑 → (𝐺𝐹) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
372357, 371breqtrrd 5117 1 (𝜑𝐸 (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  {csn 4573   class class class wbr 5089  {copab 5151  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  cexp 13968  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  .gcmg 18980  CMndccmn 19692  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387   RingIso crs 20388  Fieldcfield 20645  ringczring 21383  ℤRHomczrh 21436  chrcchr 21438  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  eval1ce1 22229   PrimRoots cprimroots 42132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-od 19440  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-rim 20391  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-chr 21442  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evl1 22231  df-primroots 42133
This theorem is referenced by:  aks6d1c1rh  42166
  Copyright terms: Public domain W3C validator