Step | Hyp | Ref
| Expression |
1 | | aks6d1c1.21 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
2 | 1 | nn0zd 12622 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℤ) |
3 | 1 | nn0ge0d 12573 |
. . . 4
⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 1 | nn0red 12571 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4 | leidd 11818 |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
6 | 2, 3, 5 | 3jca 1125 |
. . 3
⊢ (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴)) |
7 | | oveq2 7434 |
. . . . . . . 8
⊢ (ℎ = 0 → (0...ℎ) = (0...0)) |
8 | 7 | mpteq1d 5247 |
. . . . . . 7
⊢ (ℎ = 0 → (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...0) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) |
9 | 8 | oveq2d 7442 |
. . . . . 6
⊢ (ℎ = 0 → (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
10 | 9 | breq2d 5164 |
. . . . 5
⊢ (ℎ = 0 → (𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))) |
11 | | oveq2 7434 |
. . . . . . . 8
⊢ (ℎ = 𝑗 → (0...ℎ) = (0...𝑗)) |
12 | 11 | mpteq1d 5247 |
. . . . . . 7
⊢ (ℎ = 𝑗 → (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) |
13 | 12 | oveq2d 7442 |
. . . . . 6
⊢ (ℎ = 𝑗 → (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
14 | 13 | breq2d 5164 |
. . . . 5
⊢ (ℎ = 𝑗 → (𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))) |
15 | | oveq2 7434 |
. . . . . . . 8
⊢ (ℎ = (𝑗 + 1) → (0...ℎ) = (0...(𝑗 + 1))) |
16 | 15 | mpteq1d 5247 |
. . . . . . 7
⊢ (ℎ = (𝑗 + 1) → (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) |
17 | 16 | oveq2d 7442 |
. . . . . 6
⊢ (ℎ = (𝑗 + 1) → (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
18 | 17 | breq2d 5164 |
. . . . 5
⊢ (ℎ = (𝑗 + 1) → (𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))) |
19 | | oveq2 7434 |
. . . . . . . 8
⊢ (ℎ = 𝐴 → (0...ℎ) = (0...𝐴)) |
20 | 19 | mpteq1d 5247 |
. . . . . . 7
⊢ (ℎ = 𝐴 → (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) |
21 | 20 | oveq2d 7442 |
. . . . . 6
⊢ (ℎ = 𝐴 → (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
22 | 21 | breq2d 5164 |
. . . . 5
⊢ (ℎ = 𝐴 → (𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...ℎ) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))) |
23 | | aks6d1c1.1 |
. . . . . . . 8
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
24 | | aks6d1c1.2 |
. . . . . . . 8
⊢ 𝑆 = (Poly1‘𝐾) |
25 | | aks6d1c1.3 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
26 | | aks6d1c1.4 |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝐾) |
27 | | aks6d1c1.5 |
. . . . . . . 8
⊢ 𝑊 = (mulGrp‘𝑆) |
28 | | aks6d1c1.6 |
. . . . . . . 8
⊢ 𝑉 = (mulGrp‘𝐾) |
29 | | aks6d1c1.7 |
. . . . . . . 8
⊢ ↑ =
(.g‘𝑉) |
30 | | aks6d1c1.8 |
. . . . . . . 8
⊢ 𝐶 = (algSc‘𝑆) |
31 | | aks6d1c1.9 |
. . . . . . . 8
⊢ 𝐷 = (.g‘𝑊) |
32 | | aks6d1c1.10 |
. . . . . . . 8
⊢ 𝑃 = (chr‘𝐾) |
33 | | aks6d1c1.11 |
. . . . . . . 8
⊢ 𝑂 = (eval1‘𝐾) |
34 | | aks6d1c1.12 |
. . . . . . . 8
⊢ + =
(+g‘𝑆) |
35 | | aks6d1c1.13 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Field) |
36 | | aks6d1c1.14 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℙ) |
37 | | aks6d1c1.15 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ ℕ) |
38 | | aks6d1c1.16 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
39 | | aks6d1c1.17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
40 | | aks6d1c1.18 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
41 | | aks6d1c1.24 |
. . . . . . . . . . . 12
⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) |
42 | | prmnn 16652 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
43 | 36, 42 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℕ) |
44 | | aks6d1c1.22 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈
ℕ0) |
45 | 43, 44 | nnexpcld 14247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃↑𝑈) ∈ ℕ) |
46 | 43 | nnzd 12623 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ ℤ) |
47 | 43 | nnne0d 12300 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ≠ 0) |
48 | 38 | nnzd 12623 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℤ) |
49 | | dvdsval2 16241 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
50 | 46, 47, 48, 49 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
51 | 39, 50 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℤ) |
52 | 38 | nnred 12265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℝ) |
53 | 43 | nnred 12265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ ℝ) |
54 | 38 | nngt0d 12299 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 𝑁) |
55 | 43 | nngt0d 12299 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 𝑃) |
56 | 52, 53, 54, 55 | divgt0d 12187 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < (𝑁 / 𝑃)) |
57 | 51, 56 | jca 510 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃))) |
58 | | elnnz 12606 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃))) |
59 | 57, 58 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℕ) |
60 | | aks6d1c1.23 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐿 ∈
ℕ0) |
61 | 59, 60 | nnexpcld 14247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑁 / 𝑃)↑𝐿) ∈ ℕ) |
62 | 45, 61 | nnmulcld 12303 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) ∈ ℕ) |
63 | 41, 62 | eqeltrid 2833 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℕ) |
64 | 23, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 63 | aks6d1c1p7 41616 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∼ 𝑋) |
65 | 35 | fldcrngd 20644 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ CRing) |
66 | 24 | ply1crng 22124 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ CRing → 𝑆 ∈ CRing) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ CRing) |
68 | | crngring 20192 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
69 | | ringcmn 20225 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ Ring → 𝑆 ∈ CMnd) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ CRing → 𝑆 ∈ CMnd) |
71 | 67, 70 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ CMnd) |
72 | | cmnmnd 19759 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ CMnd → 𝑆 ∈ Mnd) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ Mnd) |
74 | | crngring 20192 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) |
75 | 65, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ Ring) |
76 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑆) =
(Base‘𝑆) |
77 | 26, 24, 76 | vr1cl 22143 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Ring → 𝑋 ∈ (Base‘𝑆)) |
78 | 75, 77 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑆)) |
79 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(0g‘𝑆) = (0g‘𝑆) |
80 | 76, 34, 79 | mndrid 18722 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆)) → (𝑋 + (0g‘𝑆)) = 𝑋) |
81 | 73, 78, 80 | syl2anc 582 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 + (0g‘𝑆)) = 𝑋) |
82 | 64, 81 | breqtrrd 5180 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∼ (𝑋 + (0g‘𝑆))) |
83 | | eqid 2728 |
. . . . . . . . . . . . . 14
⊢
(ℤRHom‘𝐾) = (ℤRHom‘𝐾) |
84 | | eqid 2728 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐾) = (0g‘𝐾) |
85 | 83, 84 | zrh0 21446 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Ring →
((ℤRHom‘𝐾)‘0) = (0g‘𝐾)) |
86 | 75, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℤRHom‘𝐾)‘0) =
(0g‘𝐾)) |
87 | 86 | fveq2d 6906 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (𝐶‘(0g‘𝐾))) |
88 | 24, 30, 84, 79, 75 | ply1ascl0 22180 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘(0g‘𝐾)) = (0g‘𝑆)) |
89 | 87, 88 | eqtrd 2768 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (0g‘𝑆)) |
90 | 89 | oveq2d 7442 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) = (𝑋 + (0g‘𝑆))) |
91 | 82, 90 | breqtrrd 5180 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) |
92 | | aks6d1c1.19 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) |
93 | | 0zd 12608 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
94 | | 0red 11255 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℝ) |
95 | 94 | leidd 11818 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 0) |
96 | 93, 2, 93, 95, 3 | elfzd 13532 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0...𝐴)) |
97 | 92, 96 | ffvelcdmd 7100 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘0) ∈
ℕ0) |
98 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 91, 97 | aks6d1c1p6 41617 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∼ ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))) |
99 | 27 | crngmgp 20188 |
. . . . . . . . . 10
⊢ (𝑆 ∈ CRing → 𝑊 ∈ CMnd) |
100 | 67, 99 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ CMnd) |
101 | 100 | cmnmndd 19766 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ Mnd) |
102 | | 0z 12607 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
103 | 102 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
104 | | eqid 2728 |
. . . . . . . . 9
⊢
(Base‘𝑊) =
(Base‘𝑊) |
105 | | 0le0 12351 |
. . . . . . . . . . . 12
⊢ 0 ≤
0 |
106 | 105 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ 0) |
107 | 103, 2, 103, 106, 3 | elfzd 13532 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ (0...𝐴)) |
108 | 92, 107 | ffvelcdmd 7100 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘0) ∈
ℕ0) |
109 | 83 | zrhrhm 21444 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾)
∈ (ℤring RingHom 𝐾)) |
110 | 75, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring
RingHom 𝐾)) |
111 | | zringbas 21386 |
. . . . . . . . . . . . . . 15
⊢ ℤ =
(Base‘ℤring) |
112 | | eqid 2728 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐾) =
(Base‘𝐾) |
113 | 111, 112 | rhmf 20431 |
. . . . . . . . . . . . . 14
⊢
((ℤRHom‘𝐾) ∈ (ℤring RingHom
𝐾) →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
114 | 110, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
115 | 114, 93 | ffvelcdmd 7100 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℤRHom‘𝐾)‘0) ∈
(Base‘𝐾)) |
116 | 24, 30, 112, 76 | ply1sclcl 22212 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Ring ∧
((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆)) |
117 | 75, 115, 116 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆)) |
118 | 76, 34 | mndcl 18709 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆)) |
119 | 73, 78, 117, 118 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆)) |
120 | 27, 76 | mgpbas 20087 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑊) |
121 | 119, 120 | eleqtrdi 2839 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑊)) |
122 | 104, 31, 101, 108, 121 | mulgnn0cld 19057 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊)) |
123 | | fveq2 6902 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝐹‘𝑖) = (𝐹‘0)) |
124 | | 2fveq3 6907 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘0))) |
125 | 124 | oveq2d 7442 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) |
126 | 123, 125 | oveq12d 7444 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))) |
127 | 104, 126 | gsumsn 19916 |
. . . . . . . 8
⊢ ((𝑊 ∈ Mnd ∧ 0 ∈
ℤ ∧ ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))) |
128 | 101, 103,
122, 127 | syl3anc 1368 |
. . . . . . 7
⊢ (𝜑 → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))) |
129 | 98, 128 | breqtrrd 5180 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∼ (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
130 | | fzsn 13583 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → (0...0) = {0}) |
131 | 102, 130 | ax-mp 5 |
. . . . . . . . 9
⊢ (0...0) =
{0} |
132 | 131 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (0...0) =
{0}) |
133 | 132 | mpteq1d 5247 |
. . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (0...0) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ {0} ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) |
134 | 133 | oveq2d 7442 |
. . . . . 6
⊢ (𝜑 → (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
135 | 129, 134 | breqtrrd 5180 |
. . . . 5
⊢ (𝜑 → 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
136 | 35 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Field) |
137 | 36 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃 ∈ ℙ) |
138 | 37 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑅 ∈ ℕ) |
139 | 40 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑁 gcd 𝑅) = 1) |
140 | 39 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃 ∥ 𝑁) |
141 | | simp3 1135 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
142 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) |
143 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) |
144 | | fveq2 6902 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝐹‘𝑖) = (𝐹‘𝑘)) |
145 | | 2fveq3 6907 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘𝑘))) |
146 | 145 | oveq2d 7442 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) |
147 | 144, 146 | oveq12d 7444 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))) |
148 | 142, 143,
147 | cbvmpt 5263 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...𝑗) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))) |
149 | 148 | oveq2i 7437 |
. . . . . . . . 9
⊢ (𝑊 Σg
(𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) |
150 | 149 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))) |
151 | 141, 150 | breqtrd 5178 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ∼ (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))) |
152 | 35 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐾 ∈ Field) |
153 | 36 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑃 ∈ ℙ) |
154 | 37 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑅 ∈ ℕ) |
155 | 38 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑁 ∈ ℕ) |
156 | 39 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑃 ∥ 𝑁) |
157 | 40 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑁 gcd 𝑅) = 1) |
158 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿))) |
159 | 37 | nnzd 12623 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ ℤ) |
160 | 51, 159, 60 | 3jca 1125 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈
ℕ0)) |
161 | 159, 51, 48 | 3jca 1125 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
162 | 48, 159 | jca 510 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ)) |
163 | | gcdcom 16495 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁)) |
164 | 162, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁)) |
165 | | eqeq1 2732 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1)) |
166 | 164, 165 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1)) |
167 | 166 | pm5.74i 270 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1)) |
168 | 40, 167 | mpbi 229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 gcd 𝑁) = 1) |
169 | 52 | recnd 11280 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℂ) |
170 | 53 | recnd 11280 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑃 ∈ ℂ) |
171 | 94, 54 | gtned 11387 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ≠ 0) |
172 | 169, 169,
170, 171, 47 | divdiv2d 12060 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 / (𝑁 / 𝑃)) = ((𝑁 · 𝑃) / 𝑁)) |
173 | 169, 170 | mulcomd 11273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁)) |
174 | 173 | oveq1d 7441 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑁 · 𝑃) / 𝑁) = ((𝑃 · 𝑁) / 𝑁)) |
175 | 170, 169,
169, 171, 171 | divdiv2d 12060 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑃 / (𝑁 / 𝑁)) = ((𝑃 · 𝑁) / 𝑁)) |
176 | 175 | eqcomd 2734 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑃 · 𝑁) / 𝑁) = (𝑃 / (𝑁 / 𝑁))) |
177 | 174, 176 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 · 𝑃) / 𝑁) = (𝑃 / (𝑁 / 𝑁))) |
178 | 169, 171 | dividd 12026 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑁 / 𝑁) = 1) |
179 | 178 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑃 / (𝑁 / 𝑁)) = (𝑃 / 1)) |
180 | 170 | div1d 12020 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑃 / 1) = 𝑃) |
181 | 179, 180 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑃 / (𝑁 / 𝑁)) = 𝑃) |
182 | 181, 46 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑃 / (𝑁 / 𝑁)) ∈ ℤ) |
183 | 177, 182 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑁 · 𝑃) / 𝑁) ∈ ℤ) |
184 | 172, 183 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ) |
185 | 94, 56 | gtned 11387 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 / 𝑃) ≠ 0) |
186 | | dvdsval2 16241 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)) |
187 | 51, 185, 48, 186 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)) |
188 | 184, 187 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑁 / 𝑃) ∥ 𝑁) |
189 | 168, 188 | jca 510 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) |
190 | | rpdvds 16638 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1) |
191 | 161, 189,
190 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1) |
192 | 159, 51 | jca 510 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ)) |
193 | | gcdcom 16495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ) → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅)) |
194 | 192, 193 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅)) |
195 | | eqeq1 2732 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1)) |
196 | 194, 195 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1)) |
197 | 196 | pm5.74i 270 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1) ↔ (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1)) |
198 | 191, 197 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1) |
199 | | rpexp1i 16702 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (((𝑁 / 𝑃) gcd 𝑅) = 1 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)) |
200 | 199 | imp 405 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) ∧ ((𝑁 / 𝑃) gcd 𝑅) = 1) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1) |
201 | 160, 198,
200 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1) |
202 | 201 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1) |
203 | | eqid 2728 |
. . . . . . . . . . . . . 14
⊢ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) |
204 | | simpr1 1191 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑗 ∈ ℤ) |
205 | 204 | peano2zd 12707 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑗 + 1) ∈ ℤ) |
206 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205 | aks6d1c1p2 41612 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑃 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
207 | 44 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑈 ∈
ℕ0) |
208 | 159, 46, 48 | 3jca 1125 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
209 | 168, 39 | jca 510 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃 ∥ 𝑁)) |
210 | | rpdvds 16638 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃 ∥ 𝑁)) → (𝑅 gcd 𝑃) = 1) |
211 | 208, 209,
210 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 gcd 𝑃) = 1) |
212 | 159, 46 | jca 510 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
213 | | gcdcom 16495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅)) |
214 | 212, 213 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅)) |
215 | | eqeq1 2732 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 gcd 𝑃) = (𝑃 gcd 𝑅) → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1)) |
216 | 214, 215 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1)) |
217 | 216 | pm5.74i 270 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 → (𝑅 gcd 𝑃) = 1) ↔ (𝜑 → (𝑃 gcd 𝑅) = 1)) |
218 | 211, 217 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 gcd 𝑅) = 1) |
219 | 218 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑃 gcd 𝑅) = 1) |
220 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 206, 207, 219 | aks6d1c1p8 41618 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑃↑𝑈) ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
221 | | 2fveq3 6907 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) |
222 | 221 | oveq2d 7442 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
223 | 222 | breq2d 5164 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑗 + 1) → (𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) ↔ 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))) |
224 | | aks6d1c1.25 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) |
225 | 23, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 38 | aks6d1c1p7 41616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑁 ∼ 𝑋) |
226 | 225, 81 | breqtrrd 5180 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∼ (𝑋 + (0g‘𝑆))) |
227 | 226, 90 | breqtrrd 5180 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) |
228 | 227 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑎 = 0) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) |
229 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑎 = 0) → 𝑎 = 0) |
230 | 229 | fveq2d 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑎 = 0) → ((ℤRHom‘𝐾)‘𝑎) = ((ℤRHom‘𝐾)‘0)) |
231 | 230 | fveq2d 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑎 = 0) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘0))) |
232 | 231 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑎 = 0) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) |
233 | 228, 232 | breqtrrd 5180 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑎 = 0) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) |
234 | 233 | ex 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑎 = 0 → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) |
235 | 234 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 = 0 → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) |
236 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) |
237 | | 1cnd 11247 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 1 ∈
ℂ) |
238 | 237 | addlidd 11453 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (0 + 1) = 1) |
239 | 238 | oveq1d 7441 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((0 + 1)...𝐴) = (1...𝐴)) |
240 | 239 | eleq2d 2815 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) ↔ 𝑎 ∈ (1...𝐴))) |
241 | 240 | imbi1d 340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))) |
242 | 236, 241 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) |
243 | 235, 242 | jaod 857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) |
244 | 2, 3 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) |
245 | | eluz1 12864 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ∈
ℤ → (𝐴 ∈
(ℤ≥‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))) |
246 | 93, 245 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐴 ∈ (ℤ≥‘0)
↔ (𝐴 ∈ ℤ
∧ 0 ≤ 𝐴))) |
247 | 244, 246 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 ∈
(ℤ≥‘0)) |
248 | 247 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 𝐴 ∈
(ℤ≥‘0)) |
249 | | elfzp12 13620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈
(ℤ≥‘0) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)))) |
250 | 248, 249 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)))) |
251 | 250 | imbi1d 340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ (0...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))) |
252 | 243, 251 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) |
253 | 252 | ex 411 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑎 ∈ (1...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) → (𝑎 ∈ (0...𝐴) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))) |
254 | 253 | ralimdv2 3160 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∀𝑎 ∈ (1...𝐴)𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) → ∀𝑎 ∈ (0...𝐴)𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) |
255 | 224, 254 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑎 ∈ (0...𝐴)𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) |
256 | 255 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → ∀𝑎 ∈ (0...𝐴)𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) |
257 | | 0zd 12608 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 0 ∈ ℤ) |
258 | 2 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐴 ∈ ℤ) |
259 | 204 | zred 12704 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑗 ∈ ℝ) |
260 | | 1red 11253 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 1 ∈ ℝ) |
261 | | simpr2 1192 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 0 ≤ 𝑗) |
262 | | 0le1 11775 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ≤
1 |
263 | 262 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 0 ≤ 1) |
264 | 259, 260,
261, 263 | addge0d 11828 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 0 ≤ (𝑗 + 1)) |
265 | | simpr3 1193 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑗 < 𝐴) |
266 | 204, 258 | zltp1led 41482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴)) |
267 | 265, 266 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑗 + 1) ≤ 𝐴) |
268 | 257, 258,
205, 264, 267 | elfzd 13532 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑗 + 1) ∈ (0...𝐴)) |
269 | 223, 256,
268 | rspcdva 3612 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑁 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
270 | | aks6d1c1.26 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 ↑ 𝑥)) ∈ (𝐾 RingIso 𝐾)) |
271 | 270 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 ↑ 𝑥)) ∈ (𝐾 RingIso 𝐾)) |
272 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205, 269, 271 | aks6d1c1p3 41613 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑁 / 𝑃) ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
273 | 60 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐿 ∈
ℕ0) |
274 | 198 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → ((𝑁 / 𝑃) gcd 𝑅) = 1) |
275 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 272, 273, 274 | aks6d1c1p8 41618 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → ((𝑁 / 𝑃)↑𝐿) ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
276 | 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 152, 153, 154, 202, 156, 220, 275 | aks6d1c1p5 41615 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
277 | 158, 276 | eqbrtrd 5174 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐸 ∼ (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
278 | 92 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐹:(0...𝐴)⟶ℕ0) |
279 | 278, 268 | ffvelcdmd 7100 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝐹‘(𝑗 + 1)) ∈
ℕ0) |
280 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 277, 279 | aks6d1c1p6 41617 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐸 ∼ ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))) |
281 | 101 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑊 ∈ Mnd) |
282 | | ovexd 7461 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑗 + 1) ∈ V) |
283 | 73 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑆 ∈ Mnd) |
284 | 78 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝑋 ∈ (Base‘𝑆)) |
285 | 75 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐾 ∈ Ring) |
286 | 114 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
287 | 286, 205 | ffvelcdmd 7100 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾)) |
288 | 24, 30, 112, 76 | ply1sclcl 22212 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Ring ∧
((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆)) |
289 | 285, 287,
288 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆)) |
290 | 76, 34 | mndcl 18709 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆)) |
291 | 283, 284,
289, 290 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆)) |
292 | 291, 120 | eleqtrdi 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑊)) |
293 | 104, 31, 281, 279, 292 | mulgnn0cld 19057 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊)) |
294 | | fveq2 6902 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑗 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑗 + 1))) |
295 | | 2fveq3 6907 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) |
296 | 295 | oveq2d 7442 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) |
297 | 294, 296 | oveq12d 7444 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑗 + 1) → ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))) |
298 | 104, 297 | gsumsn 19916 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Mnd ∧ (𝑗 + 1) ∈ V ∧ ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))) |
299 | 281, 282,
293, 298 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))) |
300 | 280, 299 | breqtrrd 5180 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴)) → 𝐸 ∼ (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))) |
301 | 300 | 3adant3 1129 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ∼ (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))) |
302 | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 136, 137, 138, 139, 140, 151, 301 | aks6d1c1p4 41614 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ∼ ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g‘𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))) |
303 | 142, 143,
147 | cbvmpt 5263 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))) |
304 | 303 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) |
305 | 304 | oveq2d 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))) |
306 | | eqid 2728 |
. . . . . . . 8
⊢
(+g‘𝑊) = (+g‘𝑊) |
307 | 100 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ CMnd) |
308 | | simp21 1203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℤ) |
309 | | simp22 1204 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 0 ≤ 𝑗) |
310 | 308, 309 | jca 510 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) |
311 | | elnn0z 12609 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ0
↔ (𝑗 ∈ ℤ
∧ 0 ≤ 𝑗)) |
312 | 310, 311 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℕ0) |
313 | 281 | 3adant3 1129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ Mnd) |
314 | 313 | adantr 479 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑊 ∈ Mnd) |
315 | 92 | 3ad2ant1 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐹:(0...𝐴)⟶ℕ0) |
316 | 315 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐹:(0...𝐴)⟶ℕ0) |
317 | | 0zd 12608 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ∈
ℤ) |
318 | 2 | 3ad2ant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐴 ∈ ℤ) |
319 | 318 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℤ) |
320 | | elfzelz 13541 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ∈ ℤ) |
321 | 320 | adantl 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℤ) |
322 | | elfzle1 13544 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(𝑗 + 1)) → 0 ≤ 𝑘) |
323 | 322 | adantl 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ≤ 𝑘) |
324 | 321 | zred 12704 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℝ) |
325 | 308 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℤ) |
326 | 325 | zred 12704 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℝ) |
327 | | 1red 11253 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 1 ∈
ℝ) |
328 | 326, 327 | readdcld 11281 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ) |
329 | 319 | zred 12704 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℝ) |
330 | | elfzle2 13545 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1)) |
331 | 330 | adantl 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1)) |
332 | | simpl23 1250 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 < 𝐴) |
333 | 325, 319 | zltp1led 41482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴)) |
334 | 332, 333 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝐴) |
335 | 324, 328,
329, 331, 334 | letrd 11409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ≤ 𝐴) |
336 | 317, 319,
321, 323, 335 | elfzd 13532 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ (0...𝐴)) |
337 | 316, 336 | ffvelcdmd 7100 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐹‘𝑘) ∈
ℕ0) |
338 | 283 | 3adant3 1129 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑆 ∈ Mnd) |
339 | 338 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑆 ∈ Mnd) |
340 | 284 | 3adant3 1129 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑋 ∈ (Base‘𝑆)) |
341 | 340 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑋 ∈ (Base‘𝑆)) |
342 | 285 | 3adant3 1129 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Ring) |
343 | 342 | adantr 479 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐾 ∈ Ring) |
344 | 343, 109,
113 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
345 | 344, 321 | ffvelcdmd 7100 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾)) |
346 | 24, 30, 112, 76 | ply1sclcl 22212 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Ring ∧
((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆)) |
347 | 343, 345,
346 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆)) |
348 | 76, 34 | mndcl 18709 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆)) |
349 | 339, 341,
347, 348 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆)) |
350 | 349, 120 | eleqtrdi 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑊)) |
351 | 104, 31, 314, 337, 350 | mulgnn0cld 19057 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) ∈ (Base‘𝑊)) |
352 | 104, 306,
307, 312, 351 | gsummptfzsplit 19894 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g‘𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))) |
353 | 305, 352 | eqtrd 2768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g‘𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹‘𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))) |
354 | 302, 353 | breqtrrd 5180 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴) ∧ 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
355 | 10, 14, 18, 22, 135, 354, 93, 2, 3 | fzindd 12702 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴)) → 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
356 | 355 | ex 411 |
. . 3
⊢ (𝜑 → ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴) → 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))) |
357 | 6, 356 | mpd 15 |
. 2
⊢ (𝜑 → 𝐸 ∼ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
358 | | aks6d1c1.20 |
. . . 4
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ (𝑊
Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
359 | 358 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ (𝑊
Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))) |
360 | | simplr 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝐹) |
361 | 360 | fveq1d 6904 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔‘𝑖) = (𝐹‘𝑖)) |
362 | 361 | oveq1d 7441 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) |
363 | 362 | mpteq2dva 5252 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 = 𝐹) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) |
364 | 363 | oveq2d 7442 |
. . 3
⊢ ((𝜑 ∧ 𝑔 = 𝐹) → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
365 | | nn0ex 12516 |
. . . . . 6
⊢
ℕ0 ∈ V |
366 | 365 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ0 ∈
V) |
367 | | ovexd 7461 |
. . . . 5
⊢ (𝜑 → (0...𝐴) ∈ V) |
368 | 366, 367 | elmapd 8865 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (ℕ0
↑m (0...𝐴))
↔ 𝐹:(0...𝐴)⟶ℕ0)) |
369 | 92, 368 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (ℕ0
↑m (0...𝐴))) |
370 | | ovexd 7461 |
. . 3
⊢ (𝜑 → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V) |
371 | 359, 364,
369, 370 | fvmptd 7017 |
. 2
⊢ (𝜑 → (𝐺‘𝐹) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹‘𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) |
372 | 357, 371 | breqtrrd 5180 |
1
⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |