Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1 Structured version   Visualization version   GIF version

Theorem aks6d1c1 42075
Description: Claim 1 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 30-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1.2 𝑆 = (Poly1𝐾)
aks6d1c1.3 𝐵 = (Base‘𝑆)
aks6d1c1.4 𝑋 = (var1𝐾)
aks6d1c1.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1.7 = (.g𝑉)
aks6d1c1.8 𝐶 = (algSc‘𝑆)
aks6d1c1.9 𝐷 = (.g𝑊)
aks6d1c1.10 𝑃 = (chr‘𝐾)
aks6d1c1.11 𝑂 = (eval1𝐾)
aks6d1c1.12 + = (+g𝑆)
aks6d1c1.13 (𝜑𝐾 ∈ Field)
aks6d1c1.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1.16 (𝜑𝑁 ∈ ℕ)
aks6d1c1.17 (𝜑𝑃𝑁)
aks6d1c1.18 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1.19 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c1.20 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c1.21 (𝜑𝐴 ∈ ℕ0)
aks6d1c1.22 (𝜑𝑈 ∈ ℕ0)
aks6d1c1.23 (𝜑𝐿 ∈ ℕ0)
aks6d1c1.24 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
aks6d1c1.25 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c1.26 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1 (𝜑𝐸 (𝐺𝐹))
Distinct variable groups:   + ,𝑎   + ,𝑒,𝑓,𝑦   + ,𝑔,𝑖   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   ,𝑎   𝑦,   𝐴,𝑎   𝐴,𝑔,𝑖   𝑦,𝐴,𝑖   𝑥,𝐴   𝐵,𝑒,𝑓   𝐶,𝑎   𝐶,𝑒,𝑓,𝑦   𝐶,𝑔,𝑖   𝐷,𝑒,𝑓,𝑦   𝐷,𝑔,𝑖   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑔,𝐹,𝑖   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   𝑥,𝐾   𝑒,𝐿,𝑓,𝑦   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑈,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝑒,𝑊,𝑓,𝑦   𝑔,𝑊,𝑖   𝑋,𝑎   𝑒,𝑋,𝑓,𝑦   𝑔,𝑋,𝑖   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑒,𝑓)   𝐵(𝑥,𝑦,𝑔,𝑖,𝑎)   𝐶(𝑥)   𝐷(𝑥,𝑎)   𝑃(𝑔,𝑖,𝑎)   + (𝑥)   (𝑥,𝑒,𝑓,𝑔,𝑖)   𝑅(𝑔,𝑖,𝑎)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝑈(𝑥,𝑔,𝑖,𝑎)   𝐸(𝑥,𝑔,𝑖,𝑎)   (𝑔,𝑖,𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝐿(𝑥,𝑔,𝑖,𝑎)   𝑁(𝑔,𝑖)   𝑂(𝑥,𝑔,𝑖,𝑎)   𝑉(𝑔,𝑖,𝑎)   𝑊(𝑥,𝑎)   𝑋(𝑥)

Proof of Theorem aks6d1c1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1.21 . . . . 5 (𝜑𝐴 ∈ ℕ0)
21nn0zd 12612 . . . 4 (𝜑𝐴 ∈ ℤ)
31nn0ge0d 12563 . . . 4 (𝜑 → 0 ≤ 𝐴)
41nn0red 12561 . . . . 5 (𝜑𝐴 ∈ ℝ)
54leidd 11801 . . . 4 (𝜑𝐴𝐴)
62, 3, 53jca 1128 . . 3 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴))
7 oveq2 7411 . . . . . . . 8 ( = 0 → (0...) = (0...0))
87mpteq1d 5210 . . . . . . 7 ( = 0 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
98oveq2d 7419 . . . . . 6 ( = 0 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
109breq2d 5131 . . . . 5 ( = 0 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
11 oveq2 7411 . . . . . . . 8 ( = 𝑗 → (0...) = (0...𝑗))
1211mpteq1d 5210 . . . . . . 7 ( = 𝑗 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1312oveq2d 7419 . . . . . 6 ( = 𝑗 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1413breq2d 5131 . . . . 5 ( = 𝑗 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
15 oveq2 7411 . . . . . . . 8 ( = (𝑗 + 1) → (0...) = (0...(𝑗 + 1)))
1615mpteq1d 5210 . . . . . . 7 ( = (𝑗 + 1) → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1716oveq2d 7419 . . . . . 6 ( = (𝑗 + 1) → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1817breq2d 5131 . . . . 5 ( = (𝑗 + 1) → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
19 oveq2 7411 . . . . . . . 8 ( = 𝐴 → (0...) = (0...𝐴))
2019mpteq1d 5210 . . . . . . 7 ( = 𝐴 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
2120oveq2d 7419 . . . . . 6 ( = 𝐴 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
2221breq2d 5131 . . . . 5 ( = 𝐴 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
23 aks6d1c1.1 . . . . . . . 8 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
24 aks6d1c1.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
25 aks6d1c1.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
26 aks6d1c1.4 . . . . . . . 8 𝑋 = (var1𝐾)
27 aks6d1c1.5 . . . . . . . 8 𝑊 = (mulGrp‘𝑆)
28 aks6d1c1.6 . . . . . . . 8 𝑉 = (mulGrp‘𝐾)
29 aks6d1c1.7 . . . . . . . 8 = (.g𝑉)
30 aks6d1c1.8 . . . . . . . 8 𝐶 = (algSc‘𝑆)
31 aks6d1c1.9 . . . . . . . 8 𝐷 = (.g𝑊)
32 aks6d1c1.10 . . . . . . . 8 𝑃 = (chr‘𝐾)
33 aks6d1c1.11 . . . . . . . 8 𝑂 = (eval1𝐾)
34 aks6d1c1.12 . . . . . . . 8 + = (+g𝑆)
35 aks6d1c1.13 . . . . . . . 8 (𝜑𝐾 ∈ Field)
36 aks6d1c1.14 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
37 aks6d1c1.15 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
38 aks6d1c1.16 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
39 aks6d1c1.17 . . . . . . . 8 (𝜑𝑃𝑁)
40 aks6d1c1.18 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑅) = 1)
41 aks6d1c1.24 . . . . . . . . . . . 12 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
42 prmnn 16691 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4336, 42syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
44 aks6d1c1.22 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℕ0)
4543, 44nnexpcld 14261 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑈) ∈ ℕ)
4643nnzd 12613 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℤ)
4743nnne0d 12288 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
4838nnzd 12613 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
49 dvdsval2 16273 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5139, 50mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
5238nnred 12253 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ)
5343nnred 12253 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
5438nngt0d 12287 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑁)
5543nngt0d 12287 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑃)
5652, 53, 54, 55divgt0d 12175 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (𝑁 / 𝑃))
5751, 56jca 511 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
58 elnnz 12596 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
5957, 58sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
60 aks6d1c1.23 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℕ0)
6159, 60nnexpcld 14261 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 / 𝑃)↑𝐿) ∈ ℕ)
6245, 61nnmulcld 12291 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) ∈ ℕ)
6341, 62eqeltrid 2838 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ)
6423, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 63aks6d1c1p7 42072 . . . . . . . . . 10 (𝜑𝐸 𝑋)
6535fldcrngd 20700 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
6624ply1crng 22132 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ CRing)
68 crngring 20203 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
69 ringcmn 20240 . . . . . . . . . . . . . 14 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
7068, 69syl 17 . . . . . . . . . . . . 13 (𝑆 ∈ CRing → 𝑆 ∈ CMnd)
7167, 70syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ CMnd)
72 cmnmnd 19776 . . . . . . . . . . . 12 (𝑆 ∈ CMnd → 𝑆 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Mnd)
74 crngring 20203 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
7565, 74syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
76 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
7726, 24, 76vr1cl 22151 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘𝑆))
7875, 77syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑆))
79 eqid 2735 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
8076, 34, 79mndrid 18731 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆)) → (𝑋 + (0g𝑆)) = 𝑋)
8173, 78, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 + (0g𝑆)) = 𝑋)
8264, 81breqtrrd 5147 . . . . . . . . 9 (𝜑𝐸 (𝑋 + (0g𝑆)))
83 eqid 2735 . . . . . . . . . . . . . 14 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
84 eqid 2735 . . . . . . . . . . . . . 14 (0g𝐾) = (0g𝐾)
8583, 84zrh0 21472 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8675, 85syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8786fveq2d 6879 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (𝐶‘(0g𝐾)))
8824, 30, 84, 79, 75ply1ascl0 22188 . . . . . . . . . . 11 (𝜑 → (𝐶‘(0g𝐾)) = (0g𝑆))
8987, 88eqtrd 2770 . . . . . . . . . 10 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (0g𝑆))
9089oveq2d 7419 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) = (𝑋 + (0g𝑆)))
9182, 90breqtrrd 5147 . . . . . . . 8 (𝜑𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
92 aks6d1c1.19 . . . . . . . . 9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
93 0zd 12598 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
94 0red 11236 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
9594leidd 11801 . . . . . . . . . 10 (𝜑 → 0 ≤ 0)
9693, 2, 93, 95, 3elfzd 13530 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝐴))
9792, 96ffvelcdmd 7074 . . . . . . . 8 (𝜑 → (𝐹‘0) ∈ ℕ0)
9823, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 91, 97aks6d1c1p6 42073 . . . . . . 7 (𝜑𝐸 ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
9927crngmgp 20199 . . . . . . . . . 10 (𝑆 ∈ CRing → 𝑊 ∈ CMnd)
10067, 99syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ CMnd)
101100cmnmndd 19783 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
102 0z 12597 . . . . . . . . 9 0 ∈ ℤ
103102a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
104 eqid 2735 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
105 0le0 12339 . . . . . . . . . . . 12 0 ≤ 0
106105a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
107103, 2, 103, 106, 3elfzd 13530 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝐴))
10892, 107ffvelcdmd 7074 . . . . . . . . 9 (𝜑 → (𝐹‘0) ∈ ℕ0)
10983zrhrhm 21470 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
11075, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
111 zringbas 21412 . . . . . . . . . . . . . . 15 ℤ = (Base‘ℤring)
112 eqid 2735 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
113111, 112rhmf 20443 . . . . . . . . . . . . . 14 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
114110, 113syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
115114, 93ffvelcdmd 7074 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾))
11624, 30, 112, 76ply1sclcl 22221 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11775, 115, 116syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11876, 34mndcl 18718 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
11973, 78, 117, 118syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
12027, 76mgpbas 20103 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑊)
121119, 120eleqtrdi 2844 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑊))
122104, 31, 101, 108, 121mulgnn0cld 19076 . . . . . . . 8 (𝜑 → ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊))
123 fveq2 6875 . . . . . . . . . 10 (𝑖 = 0 → (𝐹𝑖) = (𝐹‘0))
124 2fveq3 6880 . . . . . . . . . . 11 (𝑖 = 0 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
125124oveq2d 7419 . . . . . . . . . 10 (𝑖 = 0 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
126123, 125oveq12d 7421 . . . . . . . . 9 (𝑖 = 0 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
127104, 126gsumsn 19933 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 0 ∈ ℤ ∧ ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
128101, 103, 122, 127syl3anc 1373 . . . . . . 7 (𝜑 → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
12998, 128breqtrrd 5147 . . . . . 6 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
130 fzsn 13581 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
131102, 130ax-mp 5 . . . . . . . . 9 (0...0) = {0}
132131a1i 11 . . . . . . . 8 (𝜑 → (0...0) = {0})
133132mpteq1d 5210 . . . . . . 7 (𝜑 → (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
134133oveq2d 7419 . . . . . 6 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
135129, 134breqtrrd 5147 . . . . 5 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
136353ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Field)
137363ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃 ∈ ℙ)
138373ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑅 ∈ ℕ)
139403ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑁 gcd 𝑅) = 1)
140393ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃𝑁)
141 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
142 nfcv 2898 . . . . . . . . . . 11 𝑘((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))
143 nfcv 2898 . . . . . . . . . . 11 𝑖((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
144 fveq2 6875 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
145 2fveq3 6880 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘𝑘)))
146145oveq2d 7419 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
147144, 146oveq12d 7421 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
148142, 143, 147cbvmpt 5223 . . . . . . . . . 10 (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
149148oveq2i 7414 . . . . . . . . 9 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
150149a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
151141, 150breqtrd 5145 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
15235adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Field)
15336adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 ∈ ℙ)
15437adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑅 ∈ ℕ)
15538adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 ∈ ℕ)
15639adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃𝑁)
15740adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 gcd 𝑅) = 1)
15841a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)))
15937nnzd 12613 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℤ)
16051, 159, 603jca 1128 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0))
161159, 51, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
16248, 159jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
163 gcdcom 16530 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
165 eqeq1 2739 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
166164, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
167166pm5.74i 271 . . . . . . . . . . . . . . . . . 18 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
16840, 167mpbi 230 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑁) = 1)
16952recnd 11261 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
17053recnd 11261 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℂ)
17194, 54gtned 11368 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ≠ 0)
172169, 169, 170, 171, 47divdiv2d 12047 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = ((𝑁 · 𝑃) / 𝑁))
173169, 170mulcomd 11254 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
174173oveq1d 7418 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = ((𝑃 · 𝑁) / 𝑁))
175170, 169, 169, 171, 171divdiv2d 12047 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = ((𝑃 · 𝑁) / 𝑁))
176175eqcomd 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑃 · 𝑁) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
177174, 176eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
178169, 171dividd 12013 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑁 / 𝑁) = 1)
179178oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = (𝑃 / 1))
180170div1d 12007 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / 1) = 𝑃)
181179, 180eqtrd 2770 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = 𝑃)
182181, 46eqeltrd 2834 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑃 / (𝑁 / 𝑁)) ∈ ℤ)
183177, 182eqeltrd 2834 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 · 𝑃) / 𝑁) ∈ ℤ)
184172, 183eqeltrd 2834 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
18594, 56gtned 11368 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / 𝑃) ≠ 0)
186 dvdsval2 16273 . . . . . . . . . . . . . . . . . . 19 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
18751, 185, 48, 186syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
188184, 187mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
189168, 188jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
190 rpdvds 16677 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
191161, 189, 190syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
192159, 51jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ))
193 gcdcom 16530 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ) → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
194192, 193syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
195 eqeq1 2739 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
196194, 195syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
197196pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1) ↔ (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1))
198191, 197mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1)
199 rpexp1i 16740 . . . . . . . . . . . . . . 15 (((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (((𝑁 / 𝑃) gcd 𝑅) = 1 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1))
200199imp 406 . . . . . . . . . . . . . 14 ((((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) ∧ ((𝑁 / 𝑃) gcd 𝑅) = 1) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
201160, 198, 200syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
202201adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
203 eqid 2735 . . . . . . . . . . . . . 14 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
204 simpr1 1195 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℤ)
205204peano2zd 12698 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ ℤ)
20623, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205aks6d1c1p2 42068 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
20744adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑈 ∈ ℕ0)
208159, 46, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
209168, 39jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
210 rpdvds 16677 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
211208, 209, 210syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd 𝑃) = 1)
212159, 46jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ))
213 gcdcom 16530 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
214212, 213syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
215 eqeq1 2739 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd 𝑃) = (𝑃 gcd 𝑅) → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
216214, 215syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
217216pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd 𝑃) = 1) ↔ (𝜑 → (𝑃 gcd 𝑅) = 1))
218211, 217mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑅) = 1)
219218adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃 gcd 𝑅) = 1)
22023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 206, 207, 219aks6d1c1p8 42074 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃𝑈) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
221 2fveq3 6880 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
222221oveq2d 7419 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
223222breq2d 5131 . . . . . . . . . . . . . . 15 (𝑎 = (𝑗 + 1) → (𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) ↔ 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
224 aks6d1c1.25 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
22523, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 38aks6d1c1p7 42072 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑁 𝑋)
226225, 81breqtrrd 5147 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 (𝑋 + (0g𝑆)))
227226, 90breqtrrd 5147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
228227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
229 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑎 = 0) → 𝑎 = 0)
230229fveq2d 6879 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑎 = 0) → ((ℤRHom‘𝐾)‘𝑎) = ((ℤRHom‘𝐾)‘0))
231230fveq2d 6879 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑎 = 0) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
232231oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
233228, 232breqtrrd 5147 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
234233ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
235234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
236 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
237 1cnd 11228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 1 ∈ ℂ)
238237addlidd 11434 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (0 + 1) = 1)
239238oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((0 + 1)...𝐴) = (1...𝐴))
240239eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) ↔ 𝑎 ∈ (1...𝐴)))
241240imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
242236, 241mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
243235, 242jaod 859 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
2442, 3jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
245 eluz1 12854 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℤ → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
24693, 245syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
247244, 246mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ (ℤ‘0))
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 𝐴 ∈ (ℤ‘0))
249 elfzp12 13618 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (ℤ‘0) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
250248, 249syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
251250imbi1d 341 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
252243, 251mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
253252ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
254253ralimdv2 3149 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
255224, 254mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
256255adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
257 0zd 12598 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ∈ ℤ)
2582adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐴 ∈ ℤ)
259204zred 12695 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℝ)
260 1red 11234 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 1 ∈ ℝ)
261 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 𝑗)
262 0le1 11758 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
263262a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 1)
264259, 260, 261, 263addge0d 11811 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ (𝑗 + 1))
265 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 < 𝐴)
266204, 258zltp1led 41938 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
267265, 266mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ≤ 𝐴)
268257, 258, 205, 264, 267elfzd 13530 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ (0...𝐴))
269223, 256, 268rspcdva 3602 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
270 aks6d1c1.26 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
271270adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
27223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205, 269, 271aks6d1c1p3 42069 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 / 𝑃) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27360adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐿 ∈ ℕ0)
274198adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃) gcd 𝑅) = 1)
27523, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 272, 273, 274aks6d1c1p8 42074 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃)↑𝐿) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27623, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 152, 153, 154, 202, 156, 220, 275aks6d1c1p5 42071 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
277158, 276eqbrtrd 5141 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27892adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐹:(0...𝐴)⟶ℕ0)
279278, 268ffvelcdmd 7074 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐹‘(𝑗 + 1)) ∈ ℕ0)
28023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 277, 279aks6d1c1p6 42073 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
281101adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑊 ∈ Mnd)
282 ovexd 7438 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ V)
28373adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑆 ∈ Mnd)
28478adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑋 ∈ (Base‘𝑆))
28575adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Ring)
286114adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
287286, 205ffvelcdmd 7074 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾))
28824, 30, 112, 76ply1sclcl 22221 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
289285, 287, 288syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
29076, 34mndcl 18718 . . . . . . . . . . . . 13 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
291283, 284, 289, 290syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
292291, 120eleqtrdi 2844 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑊))
293104, 31, 281, 279, 292mulgnn0cld 19076 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊))
294 fveq2 6875 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
295 2fveq3 6880 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
296295oveq2d 7419 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
297294, 296oveq12d 7421 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
298104, 297gsumsn 19933 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ (𝑗 + 1) ∈ V ∧ ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
299281, 282, 293, 298syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
300280, 299breqtrrd 5147 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
3013003adant3 1132 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
30223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 136, 137, 138, 139, 140, 151, 301aks6d1c1p4 42070 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
303142, 143, 147cbvmpt 5223 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
304303a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
305304oveq2d 7419 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
306 eqid 2735 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3071003ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ CMnd)
308 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℤ)
309 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 0 ≤ 𝑗)
310308, 309jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
311 elnn0z 12599 . . . . . . . . 9 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
312310, 311sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℕ0)
3132813adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ Mnd)
314313adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑊 ∈ Mnd)
315923ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐹:(0...𝐴)⟶ℕ0)
316315adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐹:(0...𝐴)⟶ℕ0)
317 0zd 12598 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ∈ ℤ)
31823ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐴 ∈ ℤ)
319318adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℤ)
320 elfzelz 13539 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ∈ ℤ)
321320adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℤ)
322 elfzle1 13542 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 0 ≤ 𝑘)
323322adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ≤ 𝑘)
324321zred 12695 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℝ)
325308adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℤ)
326325zred 12695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℝ)
327 1red 11234 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 1 ∈ ℝ)
328326, 327readdcld 11262 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
329319zred 12695 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℝ)
330 elfzle2 13543 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
331330adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
332 simpl23 1254 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 < 𝐴)
333325, 319zltp1led 41938 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
334332, 333mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝐴)
335324, 328, 329, 331, 334letrd 11390 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘𝐴)
336317, 319, 321, 323, 335elfzd 13530 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ (0...𝐴))
337316, 336ffvelcdmd 7074 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐹𝑘) ∈ ℕ0)
3382833adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑆 ∈ Mnd)
339338adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑆 ∈ Mnd)
3402843adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑋 ∈ (Base‘𝑆))
341340adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑋 ∈ (Base‘𝑆))
3422853adant3 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Ring)
343342adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐾 ∈ Ring)
344343, 109, 1133syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
345344, 321ffvelcdmd 7074 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾))
34624, 30, 112, 76ply1sclcl 22221 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
347343, 345, 346syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
34876, 34mndcl 18718 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
349339, 341, 347, 348syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
350349, 120eleqtrdi 2844 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑊))
351104, 31, 314, 337, 350mulgnn0cld 19076 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) ∈ (Base‘𝑊))
352104, 306, 307, 312, 351gsummptfzsplit 19911 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
353305, 352eqtrd 2770 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
354302, 353breqtrrd 5147 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
35510, 14, 18, 22, 135, 354, 93, 2, 3fzindd 12693 . . . 4 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴)) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
356355ex 412 . . 3 (𝜑 → ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
3576, 356mpd 15 . 2 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
358 aks6d1c1.20 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
359358a1i 11 . . 3 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
360 simplr 768 . . . . . . 7 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝐹)
361360fveq1d 6877 . . . . . 6 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝐹𝑖))
362361oveq1d 7418 . . . . 5 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))
363362mpteq2dva 5214 . . . 4 ((𝜑𝑔 = 𝐹) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
364363oveq2d 7419 . . 3 ((𝜑𝑔 = 𝐹) → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
365 nn0ex 12505 . . . . . 6 0 ∈ V
366365a1i 11 . . . . 5 (𝜑 → ℕ0 ∈ V)
367 ovexd 7438 . . . . 5 (𝜑 → (0...𝐴) ∈ V)
368366, 367elmapd 8852 . . . 4 (𝜑 → (𝐹 ∈ (ℕ0m (0...𝐴)) ↔ 𝐹:(0...𝐴)⟶ℕ0))
36992, 368mpbird 257 . . 3 (𝜑𝐹 ∈ (ℕ0m (0...𝐴)))
370 ovexd 7438 . . 3 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
371359, 364, 369, 370fvmptd 6992 . 2 (𝜑 → (𝐺𝐹) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
372357, 371breqtrrd 5147 1 (𝜑𝐸 (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  {csn 4601   class class class wbr 5119  {copab 5181  cmpt 5201  wf 6526  cfv 6530  (class class class)co 7403  m cmap 8838  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268   / cdiv 11892  cn 12238  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  cexp 14077  cdvds 16270   gcd cgcd 16511  cprime 16688  Basecbs 17226  +gcplusg 17269  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710  .gcmg 19048  CMndccmn 19759  mulGrpcmgp 20098  Ringcrg 20191  CRingccrg 20192   RingHom crh 20427   RingIso crs 20428  Fieldcfield 20688  ringczring 21405  ℤRHomczrh 21458  chrcchr 21460  algSccascl 21810  var1cv1 22109  Poly1cpl1 22110  eval1ce1 22250   PrimRoots cprimroots 42050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-gcd 16512  df-prm 16689  df-phi 16783  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-od 19507  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-rhm 20430  df-rim 20431  df-subrng 20504  df-subrg 20528  df-drng 20689  df-field 20690  df-lmod 20817  df-lss 20887  df-lsp 20927  df-cnfld 21314  df-zring 21406  df-zrh 21462  df-chr 21464  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evl1 22252  df-primroots 42051
This theorem is referenced by:  aks6d1c1rh  42084
  Copyright terms: Public domain W3C validator