Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1 Structured version   Visualization version   GIF version

Theorem aks6d1c1 42104
Description: Claim 1 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 30-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1.2 𝑆 = (Poly1𝐾)
aks6d1c1.3 𝐵 = (Base‘𝑆)
aks6d1c1.4 𝑋 = (var1𝐾)
aks6d1c1.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1.7 = (.g𝑉)
aks6d1c1.8 𝐶 = (algSc‘𝑆)
aks6d1c1.9 𝐷 = (.g𝑊)
aks6d1c1.10 𝑃 = (chr‘𝐾)
aks6d1c1.11 𝑂 = (eval1𝐾)
aks6d1c1.12 + = (+g𝑆)
aks6d1c1.13 (𝜑𝐾 ∈ Field)
aks6d1c1.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1.16 (𝜑𝑁 ∈ ℕ)
aks6d1c1.17 (𝜑𝑃𝑁)
aks6d1c1.18 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1.19 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c1.20 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c1.21 (𝜑𝐴 ∈ ℕ0)
aks6d1c1.22 (𝜑𝑈 ∈ ℕ0)
aks6d1c1.23 (𝜑𝐿 ∈ ℕ0)
aks6d1c1.24 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
aks6d1c1.25 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c1.26 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1 (𝜑𝐸 (𝐺𝐹))
Distinct variable groups:   + ,𝑎   + ,𝑒,𝑓,𝑦   + ,𝑔,𝑖   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   ,𝑎   𝑦,   𝐴,𝑎   𝐴,𝑔,𝑖   𝑦,𝐴,𝑖   𝑥,𝐴   𝐵,𝑒,𝑓   𝐶,𝑎   𝐶,𝑒,𝑓,𝑦   𝐶,𝑔,𝑖   𝐷,𝑒,𝑓,𝑦   𝐷,𝑔,𝑖   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑔,𝐹,𝑖   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   𝑥,𝐾   𝑒,𝐿,𝑓,𝑦   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑈,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝑒,𝑊,𝑓,𝑦   𝑔,𝑊,𝑖   𝑋,𝑎   𝑒,𝑋,𝑓,𝑦   𝑔,𝑋,𝑖   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑒,𝑓)   𝐵(𝑥,𝑦,𝑔,𝑖,𝑎)   𝐶(𝑥)   𝐷(𝑥,𝑎)   𝑃(𝑔,𝑖,𝑎)   + (𝑥)   (𝑥,𝑒,𝑓,𝑔,𝑖)   𝑅(𝑔,𝑖,𝑎)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝑈(𝑥,𝑔,𝑖,𝑎)   𝐸(𝑥,𝑔,𝑖,𝑎)   (𝑔,𝑖,𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝐿(𝑥,𝑔,𝑖,𝑎)   𝑁(𝑔,𝑖)   𝑂(𝑥,𝑔,𝑖,𝑎)   𝑉(𝑔,𝑖,𝑎)   𝑊(𝑥,𝑎)   𝑋(𝑥)

Proof of Theorem aks6d1c1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1.21 . . . . 5 (𝜑𝐴 ∈ ℕ0)
21nn0zd 12555 . . . 4 (𝜑𝐴 ∈ ℤ)
31nn0ge0d 12506 . . . 4 (𝜑 → 0 ≤ 𝐴)
41nn0red 12504 . . . . 5 (𝜑𝐴 ∈ ℝ)
54leidd 11744 . . . 4 (𝜑𝐴𝐴)
62, 3, 53jca 1128 . . 3 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴))
7 oveq2 7395 . . . . . . . 8 ( = 0 → (0...) = (0...0))
87mpteq1d 5197 . . . . . . 7 ( = 0 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
98oveq2d 7403 . . . . . 6 ( = 0 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
109breq2d 5119 . . . . 5 ( = 0 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
11 oveq2 7395 . . . . . . . 8 ( = 𝑗 → (0...) = (0...𝑗))
1211mpteq1d 5197 . . . . . . 7 ( = 𝑗 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1312oveq2d 7403 . . . . . 6 ( = 𝑗 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1413breq2d 5119 . . . . 5 ( = 𝑗 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
15 oveq2 7395 . . . . . . . 8 ( = (𝑗 + 1) → (0...) = (0...(𝑗 + 1)))
1615mpteq1d 5197 . . . . . . 7 ( = (𝑗 + 1) → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1716oveq2d 7403 . . . . . 6 ( = (𝑗 + 1) → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1817breq2d 5119 . . . . 5 ( = (𝑗 + 1) → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
19 oveq2 7395 . . . . . . . 8 ( = 𝐴 → (0...) = (0...𝐴))
2019mpteq1d 5197 . . . . . . 7 ( = 𝐴 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
2120oveq2d 7403 . . . . . 6 ( = 𝐴 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
2221breq2d 5119 . . . . 5 ( = 𝐴 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
23 aks6d1c1.1 . . . . . . . 8 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
24 aks6d1c1.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
25 aks6d1c1.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
26 aks6d1c1.4 . . . . . . . 8 𝑋 = (var1𝐾)
27 aks6d1c1.5 . . . . . . . 8 𝑊 = (mulGrp‘𝑆)
28 aks6d1c1.6 . . . . . . . 8 𝑉 = (mulGrp‘𝐾)
29 aks6d1c1.7 . . . . . . . 8 = (.g𝑉)
30 aks6d1c1.8 . . . . . . . 8 𝐶 = (algSc‘𝑆)
31 aks6d1c1.9 . . . . . . . 8 𝐷 = (.g𝑊)
32 aks6d1c1.10 . . . . . . . 8 𝑃 = (chr‘𝐾)
33 aks6d1c1.11 . . . . . . . 8 𝑂 = (eval1𝐾)
34 aks6d1c1.12 . . . . . . . 8 + = (+g𝑆)
35 aks6d1c1.13 . . . . . . . 8 (𝜑𝐾 ∈ Field)
36 aks6d1c1.14 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
37 aks6d1c1.15 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
38 aks6d1c1.16 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
39 aks6d1c1.17 . . . . . . . 8 (𝜑𝑃𝑁)
40 aks6d1c1.18 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑅) = 1)
41 aks6d1c1.24 . . . . . . . . . . . 12 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
42 prmnn 16644 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4336, 42syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
44 aks6d1c1.22 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℕ0)
4543, 44nnexpcld 14210 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑈) ∈ ℕ)
4643nnzd 12556 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℤ)
4743nnne0d 12236 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
4838nnzd 12556 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
49 dvdsval2 16225 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5139, 50mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
5238nnred 12201 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ)
5343nnred 12201 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
5438nngt0d 12235 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑁)
5543nngt0d 12235 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑃)
5652, 53, 54, 55divgt0d 12118 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (𝑁 / 𝑃))
5751, 56jca 511 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
58 elnnz 12539 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
5957, 58sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
60 aks6d1c1.23 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℕ0)
6159, 60nnexpcld 14210 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 / 𝑃)↑𝐿) ∈ ℕ)
6245, 61nnmulcld 12239 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) ∈ ℕ)
6341, 62eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ)
6423, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 63aks6d1c1p7 42101 . . . . . . . . . 10 (𝜑𝐸 𝑋)
6535fldcrngd 20651 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
6624ply1crng 22083 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ CRing)
68 crngring 20154 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
69 ringcmn 20191 . . . . . . . . . . . . . 14 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
7068, 69syl 17 . . . . . . . . . . . . 13 (𝑆 ∈ CRing → 𝑆 ∈ CMnd)
7167, 70syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ CMnd)
72 cmnmnd 19727 . . . . . . . . . . . 12 (𝑆 ∈ CMnd → 𝑆 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Mnd)
74 crngring 20154 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
7565, 74syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
76 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
7726, 24, 76vr1cl 22102 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘𝑆))
7875, 77syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑆))
79 eqid 2729 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
8076, 34, 79mndrid 18682 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆)) → (𝑋 + (0g𝑆)) = 𝑋)
8173, 78, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 + (0g𝑆)) = 𝑋)
8264, 81breqtrrd 5135 . . . . . . . . 9 (𝜑𝐸 (𝑋 + (0g𝑆)))
83 eqid 2729 . . . . . . . . . . . . . 14 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
84 eqid 2729 . . . . . . . . . . . . . 14 (0g𝐾) = (0g𝐾)
8583, 84zrh0 21423 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8675, 85syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8786fveq2d 6862 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (𝐶‘(0g𝐾)))
8824, 30, 84, 79, 75ply1ascl0 22139 . . . . . . . . . . 11 (𝜑 → (𝐶‘(0g𝐾)) = (0g𝑆))
8987, 88eqtrd 2764 . . . . . . . . . 10 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (0g𝑆))
9089oveq2d 7403 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) = (𝑋 + (0g𝑆)))
9182, 90breqtrrd 5135 . . . . . . . 8 (𝜑𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
92 aks6d1c1.19 . . . . . . . . 9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
93 0zd 12541 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
94 0red 11177 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
9594leidd 11744 . . . . . . . . . 10 (𝜑 → 0 ≤ 0)
9693, 2, 93, 95, 3elfzd 13476 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝐴))
9792, 96ffvelcdmd 7057 . . . . . . . 8 (𝜑 → (𝐹‘0) ∈ ℕ0)
9823, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 91, 97aks6d1c1p6 42102 . . . . . . 7 (𝜑𝐸 ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
9927crngmgp 20150 . . . . . . . . . 10 (𝑆 ∈ CRing → 𝑊 ∈ CMnd)
10067, 99syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ CMnd)
101100cmnmndd 19734 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
102 0z 12540 . . . . . . . . 9 0 ∈ ℤ
103102a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
104 eqid 2729 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
105 0le0 12287 . . . . . . . . . . . 12 0 ≤ 0
106105a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
107103, 2, 103, 106, 3elfzd 13476 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝐴))
10892, 107ffvelcdmd 7057 . . . . . . . . 9 (𝜑 → (𝐹‘0) ∈ ℕ0)
10983zrhrhm 21421 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
11075, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
111 zringbas 21363 . . . . . . . . . . . . . . 15 ℤ = (Base‘ℤring)
112 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
113111, 112rhmf 20394 . . . . . . . . . . . . . 14 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
114110, 113syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
115114, 93ffvelcdmd 7057 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾))
11624, 30, 112, 76ply1sclcl 22172 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11775, 115, 116syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11876, 34mndcl 18669 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
11973, 78, 117, 118syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
12027, 76mgpbas 20054 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑊)
121119, 120eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑊))
122104, 31, 101, 108, 121mulgnn0cld 19027 . . . . . . . 8 (𝜑 → ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊))
123 fveq2 6858 . . . . . . . . . 10 (𝑖 = 0 → (𝐹𝑖) = (𝐹‘0))
124 2fveq3 6863 . . . . . . . . . . 11 (𝑖 = 0 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
125124oveq2d 7403 . . . . . . . . . 10 (𝑖 = 0 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
126123, 125oveq12d 7405 . . . . . . . . 9 (𝑖 = 0 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
127104, 126gsumsn 19884 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 0 ∈ ℤ ∧ ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
128101, 103, 122, 127syl3anc 1373 . . . . . . 7 (𝜑 → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
12998, 128breqtrrd 5135 . . . . . 6 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
130 fzsn 13527 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
131102, 130ax-mp 5 . . . . . . . . 9 (0...0) = {0}
132131a1i 11 . . . . . . . 8 (𝜑 → (0...0) = {0})
133132mpteq1d 5197 . . . . . . 7 (𝜑 → (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
134133oveq2d 7403 . . . . . 6 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
135129, 134breqtrrd 5135 . . . . 5 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
136353ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Field)
137363ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃 ∈ ℙ)
138373ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑅 ∈ ℕ)
139403ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑁 gcd 𝑅) = 1)
140393ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃𝑁)
141 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
142 nfcv 2891 . . . . . . . . . . 11 𝑘((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))
143 nfcv 2891 . . . . . . . . . . 11 𝑖((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
144 fveq2 6858 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
145 2fveq3 6863 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘𝑘)))
146145oveq2d 7403 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
147144, 146oveq12d 7405 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
148142, 143, 147cbvmpt 5209 . . . . . . . . . 10 (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
149148oveq2i 7398 . . . . . . . . 9 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
150149a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
151141, 150breqtrd 5133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
15235adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Field)
15336adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 ∈ ℙ)
15437adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑅 ∈ ℕ)
15538adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 ∈ ℕ)
15639adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃𝑁)
15740adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 gcd 𝑅) = 1)
15841a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)))
15937nnzd 12556 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℤ)
16051, 159, 603jca 1128 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0))
161159, 51, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
16248, 159jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
163 gcdcom 16483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
165 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
166164, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
167166pm5.74i 271 . . . . . . . . . . . . . . . . . 18 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
16840, 167mpbi 230 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑁) = 1)
16952recnd 11202 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
17053recnd 11202 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℂ)
17194, 54gtned 11309 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ≠ 0)
172169, 169, 170, 171, 47divdiv2d 11990 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = ((𝑁 · 𝑃) / 𝑁))
173169, 170mulcomd 11195 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
174173oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = ((𝑃 · 𝑁) / 𝑁))
175170, 169, 169, 171, 171divdiv2d 11990 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = ((𝑃 · 𝑁) / 𝑁))
176175eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑃 · 𝑁) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
177174, 176eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
178169, 171dividd 11956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑁 / 𝑁) = 1)
179178oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = (𝑃 / 1))
180170div1d 11950 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / 1) = 𝑃)
181179, 180eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = 𝑃)
182181, 46eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑃 / (𝑁 / 𝑁)) ∈ ℤ)
183177, 182eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 · 𝑃) / 𝑁) ∈ ℤ)
184172, 183eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
18594, 56gtned 11309 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / 𝑃) ≠ 0)
186 dvdsval2 16225 . . . . . . . . . . . . . . . . . . 19 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
18751, 185, 48, 186syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
188184, 187mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
189168, 188jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
190 rpdvds 16630 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
191161, 189, 190syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
192159, 51jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ))
193 gcdcom 16483 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ) → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
194192, 193syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
195 eqeq1 2733 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
196194, 195syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
197196pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1) ↔ (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1))
198191, 197mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1)
199 rpexp1i 16693 . . . . . . . . . . . . . . 15 (((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (((𝑁 / 𝑃) gcd 𝑅) = 1 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1))
200199imp 406 . . . . . . . . . . . . . 14 ((((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) ∧ ((𝑁 / 𝑃) gcd 𝑅) = 1) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
201160, 198, 200syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
202201adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
203 eqid 2729 . . . . . . . . . . . . . 14 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
204 simpr1 1195 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℤ)
205204peano2zd 12641 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ ℤ)
20623, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205aks6d1c1p2 42097 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
20744adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑈 ∈ ℕ0)
208159, 46, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
209168, 39jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
210 rpdvds 16630 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
211208, 209, 210syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd 𝑃) = 1)
212159, 46jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ))
213 gcdcom 16483 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
214212, 213syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
215 eqeq1 2733 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd 𝑃) = (𝑃 gcd 𝑅) → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
216214, 215syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
217216pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd 𝑃) = 1) ↔ (𝜑 → (𝑃 gcd 𝑅) = 1))
218211, 217mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑅) = 1)
219218adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃 gcd 𝑅) = 1)
22023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 206, 207, 219aks6d1c1p8 42103 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃𝑈) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
221 2fveq3 6863 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
222221oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
223222breq2d 5119 . . . . . . . . . . . . . . 15 (𝑎 = (𝑗 + 1) → (𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) ↔ 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
224 aks6d1c1.25 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
22523, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 38aks6d1c1p7 42101 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑁 𝑋)
226225, 81breqtrrd 5135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 (𝑋 + (0g𝑆)))
227226, 90breqtrrd 5135 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
228227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
229 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑎 = 0) → 𝑎 = 0)
230229fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑎 = 0) → ((ℤRHom‘𝐾)‘𝑎) = ((ℤRHom‘𝐾)‘0))
231230fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑎 = 0) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
232231oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
233228, 232breqtrrd 5135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
234233ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
235234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
236 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
237 1cnd 11169 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 1 ∈ ℂ)
238237addlidd 11375 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (0 + 1) = 1)
239238oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((0 + 1)...𝐴) = (1...𝐴))
240239eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) ↔ 𝑎 ∈ (1...𝐴)))
241240imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
242236, 241mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
243235, 242jaod 859 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
2442, 3jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
245 eluz1 12797 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℤ → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
24693, 245syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
247244, 246mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ (ℤ‘0))
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 𝐴 ∈ (ℤ‘0))
249 elfzp12 13564 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (ℤ‘0) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
250248, 249syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
251250imbi1d 341 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
252243, 251mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
253252ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
254253ralimdv2 3142 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
255224, 254mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
256255adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
257 0zd 12541 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ∈ ℤ)
2582adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐴 ∈ ℤ)
259204zred 12638 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℝ)
260 1red 11175 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 1 ∈ ℝ)
261 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 𝑗)
262 0le1 11701 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
263262a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 1)
264259, 260, 261, 263addge0d 11754 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ (𝑗 + 1))
265 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 < 𝐴)
266204, 258zltp1led 41967 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
267265, 266mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ≤ 𝐴)
268257, 258, 205, 264, 267elfzd 13476 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ (0...𝐴))
269223, 256, 268rspcdva 3589 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
270 aks6d1c1.26 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
271270adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
27223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205, 269, 271aks6d1c1p3 42098 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 / 𝑃) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27360adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐿 ∈ ℕ0)
274198adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃) gcd 𝑅) = 1)
27523, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 272, 273, 274aks6d1c1p8 42103 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃)↑𝐿) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27623, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 152, 153, 154, 202, 156, 220, 275aks6d1c1p5 42100 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
277158, 276eqbrtrd 5129 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27892adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐹:(0...𝐴)⟶ℕ0)
279278, 268ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐹‘(𝑗 + 1)) ∈ ℕ0)
28023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 277, 279aks6d1c1p6 42102 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
281101adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑊 ∈ Mnd)
282 ovexd 7422 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ V)
28373adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑆 ∈ Mnd)
28478adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑋 ∈ (Base‘𝑆))
28575adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Ring)
286114adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
287286, 205ffvelcdmd 7057 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾))
28824, 30, 112, 76ply1sclcl 22172 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
289285, 287, 288syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
29076, 34mndcl 18669 . . . . . . . . . . . . 13 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
291283, 284, 289, 290syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
292291, 120eleqtrdi 2838 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑊))
293104, 31, 281, 279, 292mulgnn0cld 19027 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊))
294 fveq2 6858 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
295 2fveq3 6863 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
296295oveq2d 7403 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
297294, 296oveq12d 7405 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
298104, 297gsumsn 19884 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ (𝑗 + 1) ∈ V ∧ ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
299281, 282, 293, 298syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
300280, 299breqtrrd 5135 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
3013003adant3 1132 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
30223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 136, 137, 138, 139, 140, 151, 301aks6d1c1p4 42099 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
303142, 143, 147cbvmpt 5209 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
304303a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
305304oveq2d 7403 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
306 eqid 2729 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3071003ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ CMnd)
308 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℤ)
309 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 0 ≤ 𝑗)
310308, 309jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
311 elnn0z 12542 . . . . . . . . 9 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
312310, 311sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℕ0)
3132813adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ Mnd)
314313adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑊 ∈ Mnd)
315923ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐹:(0...𝐴)⟶ℕ0)
316315adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐹:(0...𝐴)⟶ℕ0)
317 0zd 12541 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ∈ ℤ)
31823ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐴 ∈ ℤ)
319318adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℤ)
320 elfzelz 13485 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ∈ ℤ)
321320adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℤ)
322 elfzle1 13488 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 0 ≤ 𝑘)
323322adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ≤ 𝑘)
324321zred 12638 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℝ)
325308adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℤ)
326325zred 12638 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℝ)
327 1red 11175 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 1 ∈ ℝ)
328326, 327readdcld 11203 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
329319zred 12638 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℝ)
330 elfzle2 13489 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
331330adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
332 simpl23 1254 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 < 𝐴)
333325, 319zltp1led 41967 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
334332, 333mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝐴)
335324, 328, 329, 331, 334letrd 11331 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘𝐴)
336317, 319, 321, 323, 335elfzd 13476 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ (0...𝐴))
337316, 336ffvelcdmd 7057 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐹𝑘) ∈ ℕ0)
3382833adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑆 ∈ Mnd)
339338adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑆 ∈ Mnd)
3402843adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑋 ∈ (Base‘𝑆))
341340adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑋 ∈ (Base‘𝑆))
3422853adant3 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Ring)
343342adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐾 ∈ Ring)
344343, 109, 1133syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
345344, 321ffvelcdmd 7057 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾))
34624, 30, 112, 76ply1sclcl 22172 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
347343, 345, 346syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
34876, 34mndcl 18669 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
349339, 341, 347, 348syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
350349, 120eleqtrdi 2838 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑊))
351104, 31, 314, 337, 350mulgnn0cld 19027 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) ∈ (Base‘𝑊))
352104, 306, 307, 312, 351gsummptfzsplit 19862 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
353305, 352eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
354302, 353breqtrrd 5135 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
35510, 14, 18, 22, 135, 354, 93, 2, 3fzindd 12636 . . . 4 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴)) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
356355ex 412 . . 3 (𝜑 → ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
3576, 356mpd 15 . 2 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
358 aks6d1c1.20 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
359358a1i 11 . . 3 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
360 simplr 768 . . . . . . 7 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝐹)
361360fveq1d 6860 . . . . . 6 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝐹𝑖))
362361oveq1d 7402 . . . . 5 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))
363362mpteq2dva 5200 . . . 4 ((𝜑𝑔 = 𝐹) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
364363oveq2d 7403 . . 3 ((𝜑𝑔 = 𝐹) → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
365 nn0ex 12448 . . . . . 6 0 ∈ V
366365a1i 11 . . . . 5 (𝜑 → ℕ0 ∈ V)
367 ovexd 7422 . . . . 5 (𝜑 → (0...𝐴) ∈ V)
368366, 367elmapd 8813 . . . 4 (𝜑 → (𝐹 ∈ (ℕ0m (0...𝐴)) ↔ 𝐹:(0...𝐴)⟶ℕ0))
36992, 368mpbird 257 . . 3 (𝜑𝐹 ∈ (ℕ0m (0...𝐴)))
370 ovexd 7422 . . 3 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
371359, 364, 369, 370fvmptd 6975 . 2 (𝜑 → (𝐺𝐹) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
372357, 371breqtrrd 5135 1 (𝜑𝐸 (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  {csn 4589   class class class wbr 5107  {copab 5169  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cexp 14026  cdvds 16222   gcd cgcd 16464  cprime 16641  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378   RingIso crs 20379  Fieldcfield 20639  ringczring 21356  ℤRHomczrh 21409  chrcchr 21411  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-rim 20382  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evl1 22203  df-primroots 42080
This theorem is referenced by:  aks6d1c1rh  42113
  Copyright terms: Public domain W3C validator