Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c1 Structured version   Visualization version   GIF version

Theorem aks6d1c1 42089
Description: Claim 1 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 30-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c1.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
aks6d1c1.2 𝑆 = (Poly1𝐾)
aks6d1c1.3 𝐵 = (Base‘𝑆)
aks6d1c1.4 𝑋 = (var1𝐾)
aks6d1c1.5 𝑊 = (mulGrp‘𝑆)
aks6d1c1.6 𝑉 = (mulGrp‘𝐾)
aks6d1c1.7 = (.g𝑉)
aks6d1c1.8 𝐶 = (algSc‘𝑆)
aks6d1c1.9 𝐷 = (.g𝑊)
aks6d1c1.10 𝑃 = (chr‘𝐾)
aks6d1c1.11 𝑂 = (eval1𝐾)
aks6d1c1.12 + = (+g𝑆)
aks6d1c1.13 (𝜑𝐾 ∈ Field)
aks6d1c1.14 (𝜑𝑃 ∈ ℙ)
aks6d1c1.15 (𝜑𝑅 ∈ ℕ)
aks6d1c1.16 (𝜑𝑁 ∈ ℕ)
aks6d1c1.17 (𝜑𝑃𝑁)
aks6d1c1.18 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c1.19 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c1.20 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c1.21 (𝜑𝐴 ∈ ℕ0)
aks6d1c1.22 (𝜑𝑈 ∈ ℕ0)
aks6d1c1.23 (𝜑𝐿 ∈ ℕ0)
aks6d1c1.24 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
aks6d1c1.25 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c1.26 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
Assertion
Ref Expression
aks6d1c1 (𝜑𝐸 (𝐺𝐹))
Distinct variable groups:   + ,𝑎   + ,𝑒,𝑓,𝑦   + ,𝑔,𝑖   ,𝑒,𝑓,𝑦   𝑥, ,𝑦   ,𝑎   𝑦,   𝐴,𝑎   𝐴,𝑔,𝑖   𝑦,𝐴,𝑖   𝑥,𝐴   𝐵,𝑒,𝑓   𝐶,𝑎   𝐶,𝑒,𝑓,𝑦   𝐶,𝑔,𝑖   𝐷,𝑒,𝑓,𝑦   𝐷,𝑔,𝑖   𝑒,𝐸,𝑓,𝑦   𝑒,𝐹,𝑓,𝑦   𝑔,𝐹,𝑖   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   𝑥,𝐾   𝑒,𝐿,𝑓,𝑦   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑒,𝑂,𝑓,𝑦   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑈,𝑒,𝑓,𝑦   𝑒,𝑉,𝑓,𝑦   𝑥,𝑉   𝑒,𝑊,𝑓,𝑦   𝑔,𝑊,𝑖   𝑋,𝑎   𝑒,𝑋,𝑓,𝑦   𝑔,𝑋,𝑖   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑒,𝑓)   𝐵(𝑥,𝑦,𝑔,𝑖,𝑎)   𝐶(𝑥)   𝐷(𝑥,𝑎)   𝑃(𝑔,𝑖,𝑎)   + (𝑥)   (𝑥,𝑒,𝑓,𝑔,𝑖)   𝑅(𝑔,𝑖,𝑎)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝑈(𝑥,𝑔,𝑖,𝑎)   𝐸(𝑥,𝑔,𝑖,𝑎)   (𝑔,𝑖,𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑥,𝑦,𝑒,𝑓,𝑔,𝑖,𝑎)   𝐿(𝑥,𝑔,𝑖,𝑎)   𝑁(𝑔,𝑖)   𝑂(𝑥,𝑔,𝑖,𝑎)   𝑉(𝑔,𝑖,𝑎)   𝑊(𝑥,𝑎)   𝑋(𝑥)

Proof of Theorem aks6d1c1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c1.21 . . . . 5 (𝜑𝐴 ∈ ℕ0)
21nn0zd 12497 . . . 4 (𝜑𝐴 ∈ ℤ)
31nn0ge0d 12448 . . . 4 (𝜑 → 0 ≤ 𝐴)
41nn0red 12446 . . . . 5 (𝜑𝐴 ∈ ℝ)
54leidd 11686 . . . 4 (𝜑𝐴𝐴)
62, 3, 53jca 1128 . . 3 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴))
7 oveq2 7357 . . . . . . . 8 ( = 0 → (0...) = (0...0))
87mpteq1d 5182 . . . . . . 7 ( = 0 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
98oveq2d 7365 . . . . . 6 ( = 0 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
109breq2d 5104 . . . . 5 ( = 0 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
11 oveq2 7357 . . . . . . . 8 ( = 𝑗 → (0...) = (0...𝑗))
1211mpteq1d 5182 . . . . . . 7 ( = 𝑗 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1312oveq2d 7365 . . . . . 6 ( = 𝑗 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1413breq2d 5104 . . . . 5 ( = 𝑗 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
15 oveq2 7357 . . . . . . . 8 ( = (𝑗 + 1) → (0...) = (0...(𝑗 + 1)))
1615mpteq1d 5182 . . . . . . 7 ( = (𝑗 + 1) → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
1716oveq2d 7365 . . . . . 6 ( = (𝑗 + 1) → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
1817breq2d 5104 . . . . 5 ( = (𝑗 + 1) → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
19 oveq2 7357 . . . . . . . 8 ( = 𝐴 → (0...) = (0...𝐴))
2019mpteq1d 5182 . . . . . . 7 ( = 𝐴 → (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
2120oveq2d 7365 . . . . . 6 ( = 𝐴 → (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
2221breq2d 5104 . . . . 5 ( = 𝐴 → (𝐸 (𝑊 Σg (𝑖 ∈ (0...) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ↔ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
23 aks6d1c1.1 . . . . . . . 8 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ((𝑂𝑓)‘𝑦)) = ((𝑂𝑓)‘(𝑒 𝑦)))}
24 aks6d1c1.2 . . . . . . . 8 𝑆 = (Poly1𝐾)
25 aks6d1c1.3 . . . . . . . 8 𝐵 = (Base‘𝑆)
26 aks6d1c1.4 . . . . . . . 8 𝑋 = (var1𝐾)
27 aks6d1c1.5 . . . . . . . 8 𝑊 = (mulGrp‘𝑆)
28 aks6d1c1.6 . . . . . . . 8 𝑉 = (mulGrp‘𝐾)
29 aks6d1c1.7 . . . . . . . 8 = (.g𝑉)
30 aks6d1c1.8 . . . . . . . 8 𝐶 = (algSc‘𝑆)
31 aks6d1c1.9 . . . . . . . 8 𝐷 = (.g𝑊)
32 aks6d1c1.10 . . . . . . . 8 𝑃 = (chr‘𝐾)
33 aks6d1c1.11 . . . . . . . 8 𝑂 = (eval1𝐾)
34 aks6d1c1.12 . . . . . . . 8 + = (+g𝑆)
35 aks6d1c1.13 . . . . . . . 8 (𝜑𝐾 ∈ Field)
36 aks6d1c1.14 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
37 aks6d1c1.15 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
38 aks6d1c1.16 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
39 aks6d1c1.17 . . . . . . . 8 (𝜑𝑃𝑁)
40 aks6d1c1.18 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑅) = 1)
41 aks6d1c1.24 . . . . . . . . . . . 12 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿))
42 prmnn 16585 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4336, 42syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
44 aks6d1c1.22 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℕ0)
4543, 44nnexpcld 14152 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑈) ∈ ℕ)
4643nnzd 12498 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℤ)
4743nnne0d 12178 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ≠ 0)
4838nnzd 12498 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
49 dvdsval2 16166 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
5139, 50mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
5238nnred 12143 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ)
5343nnred 12143 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
5438nngt0d 12177 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑁)
5543nngt0d 12177 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝑃)
5652, 53, 54, 55divgt0d 12060 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (𝑁 / 𝑃))
5751, 56jca 511 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
58 elnnz 12481 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℕ ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 < (𝑁 / 𝑃)))
5957, 58sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
60 aks6d1c1.23 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℕ0)
6159, 60nnexpcld 14152 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 / 𝑃)↑𝐿) ∈ ℕ)
6245, 61nnmulcld 12181 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) ∈ ℕ)
6341, 62eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ)
6423, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 63aks6d1c1p7 42086 . . . . . . . . . 10 (𝜑𝐸 𝑋)
6535fldcrngd 20627 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
6624ply1crng 22081 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → 𝑆 ∈ CRing)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ CRing)
68 crngring 20130 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
69 ringcmn 20167 . . . . . . . . . . . . . 14 (𝑆 ∈ Ring → 𝑆 ∈ CMnd)
7068, 69syl 17 . . . . . . . . . . . . 13 (𝑆 ∈ CRing → 𝑆 ∈ CMnd)
7167, 70syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ CMnd)
72 cmnmnd 19676 . . . . . . . . . . . 12 (𝑆 ∈ CMnd → 𝑆 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Mnd)
74 crngring 20130 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
7565, 74syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
76 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
7726, 24, 76vr1cl 22100 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘𝑆))
7875, 77syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘𝑆))
79 eqid 2729 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
8076, 34, 79mndrid 18629 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆)) → (𝑋 + (0g𝑆)) = 𝑋)
8173, 78, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 + (0g𝑆)) = 𝑋)
8264, 81breqtrrd 5120 . . . . . . . . 9 (𝜑𝐸 (𝑋 + (0g𝑆)))
83 eqid 2729 . . . . . . . . . . . . . 14 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
84 eqid 2729 . . . . . . . . . . . . . 14 (0g𝐾) = (0g𝐾)
8583, 84zrh0 21420 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8675, 85syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) = (0g𝐾))
8786fveq2d 6826 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (𝐶‘(0g𝐾)))
8824, 30, 84, 79, 75ply1ascl0 22137 . . . . . . . . . . 11 (𝜑 → (𝐶‘(0g𝐾)) = (0g𝑆))
8987, 88eqtrd 2764 . . . . . . . . . 10 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) = (0g𝑆))
9089oveq2d 7365 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) = (𝑋 + (0g𝑆)))
9182, 90breqtrrd 5120 . . . . . . . 8 (𝜑𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
92 aks6d1c1.19 . . . . . . . . 9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
93 0zd 12483 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
94 0red 11118 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
9594leidd 11686 . . . . . . . . . 10 (𝜑 → 0 ≤ 0)
9693, 2, 93, 95, 3elfzd 13418 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝐴))
9792, 96ffvelcdmd 7019 . . . . . . . 8 (𝜑 → (𝐹‘0) ∈ ℕ0)
9823, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 91, 97aks6d1c1p6 42087 . . . . . . 7 (𝜑𝐸 ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
9927crngmgp 20126 . . . . . . . . . 10 (𝑆 ∈ CRing → 𝑊 ∈ CMnd)
10067, 99syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ CMnd)
101100cmnmndd 19683 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
102 0z 12482 . . . . . . . . 9 0 ∈ ℤ
103102a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
104 eqid 2729 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
105 0le0 12229 . . . . . . . . . . . 12 0 ≤ 0
106105a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ≤ 0)
107103, 2, 103, 106, 3elfzd 13418 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝐴))
10892, 107ffvelcdmd 7019 . . . . . . . . 9 (𝜑 → (𝐹‘0) ∈ ℕ0)
10983zrhrhm 21418 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
11075, 109syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
111 zringbas 21360 . . . . . . . . . . . . . . 15 ℤ = (Base‘ℤring)
112 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
113111, 112rhmf 20370 . . . . . . . . . . . . . 14 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
114110, 113syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
115114, 93ffvelcdmd 7019 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾))
11624, 30, 112, 76ply1sclcl 22170 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘0) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11775, 115, 116syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆))
11876, 34mndcl 18616 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘0)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
11973, 78, 117, 118syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑆))
12027, 76mgpbas 20030 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑊)
121119, 120eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))) ∈ (Base‘𝑊))
122104, 31, 101, 108, 121mulgnn0cld 18974 . . . . . . . 8 (𝜑 → ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊))
123 fveq2 6822 . . . . . . . . . 10 (𝑖 = 0 → (𝐹𝑖) = (𝐹‘0))
124 2fveq3 6827 . . . . . . . . . . 11 (𝑖 = 0 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
125124oveq2d 7365 . . . . . . . . . 10 (𝑖 = 0 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
126123, 125oveq12d 7367 . . . . . . . . 9 (𝑖 = 0 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
127104, 126gsumsn 19833 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 0 ∈ ℤ ∧ ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
128101, 103, 122, 127syl3anc 1373 . . . . . . 7 (𝜑 → (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝐹‘0)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0)))))
12998, 128breqtrrd 5120 . . . . . 6 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
130 fzsn 13469 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
131102, 130ax-mp 5 . . . . . . . . 9 (0...0) = {0}
132131a1i 11 . . . . . . . 8 (𝜑 → (0...0) = {0})
133132mpteq1d 5182 . . . . . . 7 (𝜑 → (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
134133oveq2d 7365 . . . . . 6 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ {0} ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
135129, 134breqtrrd 5120 . . . . 5 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...0) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
136353ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Field)
137363ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃 ∈ ℙ)
138373ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑅 ∈ ℕ)
139403ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑁 gcd 𝑅) = 1)
140393ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑃𝑁)
141 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
142 nfcv 2891 . . . . . . . . . . 11 𝑘((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))
143 nfcv 2891 . . . . . . . . . . 11 𝑖((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
144 fveq2 6822 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
145 2fveq3 6827 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝐶‘((ℤRHom‘𝐾)‘𝑖)) = (𝐶‘((ℤRHom‘𝐾)‘𝑘)))
146145oveq2d 7365 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))
147144, 146oveq12d 7367 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
148142, 143, 147cbvmpt 5194 . . . . . . . . . 10 (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
149148oveq2i 7360 . . . . . . . . 9 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
150149a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
151141, 150breqtrd 5118 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
15235adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Field)
15336adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 ∈ ℙ)
15437adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑅 ∈ ℕ)
15538adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 ∈ ℕ)
15639adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃𝑁)
15740adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 gcd 𝑅) = 1)
15841a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 = ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)))
15937nnzd 12498 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℤ)
16051, 159, 603jca 1128 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0))
161159, 51, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ))
16248, 159jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ))
163 gcdcom 16424 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 gcd 𝑅) = (𝑅 gcd 𝑁))
165 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 gcd 𝑅) = (𝑅 gcd 𝑁) → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
166164, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 gcd 𝑅) = 1 ↔ (𝑅 gcd 𝑁) = 1))
167166pm5.74i 271 . . . . . . . . . . . . . . . . . 18 ((𝜑 → (𝑁 gcd 𝑅) = 1) ↔ (𝜑 → (𝑅 gcd 𝑁) = 1))
16840, 167mpbi 230 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑁) = 1)
16952recnd 11143 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
17053recnd 11143 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℂ)
17194, 54gtned 11251 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ≠ 0)
172169, 169, 170, 171, 47divdiv2d 11932 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / (𝑁 / 𝑃)) = ((𝑁 · 𝑃) / 𝑁))
173169, 170mulcomd 11136 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
174173oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = ((𝑃 · 𝑁) / 𝑁))
175170, 169, 169, 171, 171divdiv2d 11932 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = ((𝑃 · 𝑁) / 𝑁))
176175eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑃 · 𝑁) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
177174, 176eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑃) / 𝑁) = (𝑃 / (𝑁 / 𝑁)))
178169, 171dividd 11898 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑁 / 𝑁) = 1)
179178oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = (𝑃 / 1))
180170div1d 11892 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃 / 1) = 𝑃)
181179, 180eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 / (𝑁 / 𝑁)) = 𝑃)
182181, 46eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑃 / (𝑁 / 𝑁)) ∈ ℤ)
183177, 182eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 · 𝑃) / 𝑁) ∈ ℤ)
184172, 183eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 / (𝑁 / 𝑃)) ∈ ℤ)
18594, 56gtned 11251 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 / 𝑃) ≠ 0)
186 dvdsval2 16166 . . . . . . . . . . . . . . . . . . 19 (((𝑁 / 𝑃) ∈ ℤ ∧ (𝑁 / 𝑃) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
18751, 185, 48, 186syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 / 𝑃) ∥ 𝑁 ↔ (𝑁 / (𝑁 / 𝑃)) ∈ ℤ))
188184, 187mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 / 𝑃) ∥ 𝑁)
189168, 188jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁))
190 rpdvds 16571 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ (𝑁 / 𝑃) ∥ 𝑁)) → (𝑅 gcd (𝑁 / 𝑃)) = 1)
191161, 189, 190syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1)
192159, 51jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ))
193 gcdcom 16424 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ (𝑁 / 𝑃) ∈ ℤ) → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
194192, 193syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅))
195 eqeq1 2733 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd (𝑁 / 𝑃)) = ((𝑁 / 𝑃) gcd 𝑅) → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
196194, 195syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd (𝑁 / 𝑃)) = 1 ↔ ((𝑁 / 𝑃) gcd 𝑅) = 1))
197196pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd (𝑁 / 𝑃)) = 1) ↔ (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1))
198191, 197mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃) gcd 𝑅) = 1)
199 rpexp1i 16634 . . . . . . . . . . . . . . 15 (((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (((𝑁 / 𝑃) gcd 𝑅) = 1 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1))
200199imp 406 . . . . . . . . . . . . . 14 ((((𝑁 / 𝑃) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0) ∧ ((𝑁 / 𝑃) gcd 𝑅) = 1) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
201160, 198, 200syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
202201adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (((𝑁 / 𝑃)↑𝐿) gcd 𝑅) = 1)
203 eqid 2729 . . . . . . . . . . . . . 14 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
204 simpr1 1195 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℤ)
205204peano2zd 12583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ ℤ)
20623, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205aks6d1c1p2 42082 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑃 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
20744adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑈 ∈ ℕ0)
208159, 46, 483jca 1128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
209168, 39jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁))
210 rpdvds 16571 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑃𝑁)) → (𝑅 gcd 𝑃) = 1)
211208, 209, 210syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 gcd 𝑃) = 1)
212159, 46jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ))
213 gcdcom 16424 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
214212, 213syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 gcd 𝑃) = (𝑃 gcd 𝑅))
215 eqeq1 2733 . . . . . . . . . . . . . . . . 17 ((𝑅 gcd 𝑃) = (𝑃 gcd 𝑅) → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
216214, 215syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑅 gcd 𝑃) = 1 ↔ (𝑃 gcd 𝑅) = 1))
217216pm5.74i 271 . . . . . . . . . . . . . . 15 ((𝜑 → (𝑅 gcd 𝑃) = 1) ↔ (𝜑 → (𝑃 gcd 𝑅) = 1))
218211, 217mpbi 230 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑅) = 1)
219218adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃 gcd 𝑅) = 1)
22023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 206, 207, 219aks6d1c1p8 42088 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑃𝑈) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
221 2fveq3 6827 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
222221oveq2d 7365 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
223222breq2d 5104 . . . . . . . . . . . . . . 15 (𝑎 = (𝑗 + 1) → (𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) ↔ 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
224 aks6d1c1.25 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
22523, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 38aks6d1c1p7 42086 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑁 𝑋)
226225, 81breqtrrd 5120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 (𝑋 + (0g𝑆)))
227226, 90breqtrrd 5120 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
228227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
229 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑎 = 0) → 𝑎 = 0)
230229fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑎 = 0) → ((ℤRHom‘𝐾)‘𝑎) = ((ℤRHom‘𝐾)‘0))
231230fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑎 = 0) → (𝐶‘((ℤRHom‘𝐾)‘𝑎)) = (𝐶‘((ℤRHom‘𝐾)‘0)))
232231oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 = 0) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘0))))
233228, 232breqtrrd 5120 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑎 = 0) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
234233ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
235234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 = 0 → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
236 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
237 1cnd 11110 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 1 ∈ ℂ)
238237addlidd 11317 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (0 + 1) = 1)
239238oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((0 + 1)...𝐴) = (1...𝐴))
240239eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) ↔ 𝑎 ∈ (1...𝐴)))
241240imbi1d 341 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
242236, 241mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ ((0 + 1)...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
243235, 242jaod 859 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
2442, 3jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
245 eluz1 12739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℤ → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
24693, 245syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 ∈ (ℤ‘0) ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
247244, 246mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ (ℤ‘0))
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → 𝐴 ∈ (ℤ‘0))
249 elfzp12 13506 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ (ℤ‘0) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
250248, 249syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) ↔ (𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴))))
251250imbi1d 341 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → ((𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) ↔ ((𝑎 = 0 ∨ 𝑎 ∈ ((0 + 1)...𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
252243, 251mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
253252ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑎 ∈ (1...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))) → (𝑎 ∈ (0...𝐴) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))))
254253ralimdv2 3138 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑎 ∈ (1...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎)))))
255224, 254mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
256255adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ∀𝑎 ∈ (0...𝐴)𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑎))))
257 0zd 12483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ∈ ℤ)
2582adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐴 ∈ ℤ)
259204zred 12580 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 ∈ ℝ)
260 1red 11116 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 1 ∈ ℝ)
261 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 𝑗)
262 0le1 11643 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
263262a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ 1)
264259, 260, 261, 263addge0d 11696 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 0 ≤ (𝑗 + 1))
265 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑗 < 𝐴)
266204, 258zltp1led 41952 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
267265, 266mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ≤ 𝐴)
268257, 258, 205, 264, 267elfzd 13418 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ (0...𝐴))
269223, 256, 268rspcdva 3578 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑁 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
270 aks6d1c1.26 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
271270adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃 𝑥)) ∈ (𝐾 RingIso 𝐾))
27223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 157, 156, 203, 205, 269, 271aks6d1c1p3 42083 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑁 / 𝑃) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27360adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐿 ∈ ℕ0)
274198adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃) gcd 𝑅) = 1)
27523, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 272, 273, 274aks6d1c1p8 42088 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑁 / 𝑃)↑𝐿) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27623, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 152, 153, 154, 202, 156, 220, 275aks6d1c1p5 42085 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝑃𝑈) · ((𝑁 / 𝑃)↑𝐿)) (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
277158, 276eqbrtrd 5114 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
27892adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐹:(0...𝐴)⟶ℕ0)
279278, 268ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐹‘(𝑗 + 1)) ∈ ℕ0)
28023, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 152, 153, 154, 155, 156, 157, 277, 279aks6d1c1p6 42087 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
281101adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑊 ∈ Mnd)
282 ovexd 7384 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑗 + 1) ∈ V)
28373adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑆 ∈ Mnd)
28478adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝑋 ∈ (Base‘𝑆))
28575adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐾 ∈ Ring)
286114adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
287286, 205ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾))
28824, 30, 112, 76ply1sclcl 22170 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘(𝑗 + 1)) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
289285, 287, 288syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆))
29076, 34mndcl 18616 . . . . . . . . . . . . 13 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
291283, 284, 289, 290syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑆))
292291, 120eleqtrdi 2838 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))) ∈ (Base‘𝑊))
293104, 31, 281, 279, 292mulgnn0cld 18974 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊))
294 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
295 2fveq3 6827 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) = (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))
296295oveq2d 7365 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) = (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1)))))
297294, 296oveq12d 7367 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
298104, 297gsumsn 19833 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ (𝑗 + 1) ∈ V ∧ ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))) ∈ (Base‘𝑊)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
299281, 282, 293, 298syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝐹‘(𝑗 + 1))𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘(𝑗 + 1))))))
300280, 299breqtrrd 5120 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴)) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
3013003adant3 1132 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
30223, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 136, 137, 138, 139, 140, 151, 301aks6d1c1p4 42084 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
303142, 143, 147cbvmpt 5194 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))
304303a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))
305304oveq2d 7365 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))))
306 eqid 2729 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3071003ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ CMnd)
308 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℤ)
309 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 0 ≤ 𝑗)
310308, 309jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
311 elnn0z 12484 . . . . . . . . 9 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
312310, 311sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑗 ∈ ℕ0)
3132813adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑊 ∈ Mnd)
314313adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑊 ∈ Mnd)
315923ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐹:(0...𝐴)⟶ℕ0)
316315adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐹:(0...𝐴)⟶ℕ0)
317 0zd 12483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ∈ ℤ)
31823ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐴 ∈ ℤ)
319318adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℤ)
320 elfzelz 13427 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ∈ ℤ)
321320adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℤ)
322 elfzle1 13430 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑗 + 1)) → 0 ≤ 𝑘)
323322adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 0 ≤ 𝑘)
324321zred 12580 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ ℝ)
325308adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℤ)
326325zred 12580 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 ∈ ℝ)
327 1red 11116 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 1 ∈ ℝ)
328326, 327readdcld 11144 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
329319zred 12580 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐴 ∈ ℝ)
330 elfzle2 13431 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
331330adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
332 simpl23 1254 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑗 < 𝐴)
333325, 319zltp1led 41952 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 < 𝐴 ↔ (𝑗 + 1) ≤ 𝐴))
334332, 333mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝐴)
335324, 328, 329, 331, 334letrd 11273 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘𝐴)
336317, 319, 321, 323, 335elfzd 13418 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑘 ∈ (0...𝐴))
337316, 336ffvelcdmd 7019 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐹𝑘) ∈ ℕ0)
3382833adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑆 ∈ Mnd)
339338adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑆 ∈ Mnd)
3402843adant3 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝑋 ∈ (Base‘𝑆))
341340adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝑋 ∈ (Base‘𝑆))
3422853adant3 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐾 ∈ Ring)
343342adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → 𝐾 ∈ Ring)
344343, 109, 1133syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
345344, 321ffvelcdmd 7019 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾))
34624, 30, 112, 76ply1sclcl 22170 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑘) ∈ (Base‘𝐾)) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
347343, 345, 346syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆))
34876, 34mndcl 18616 . . . . . . . . . . 11 ((𝑆 ∈ Mnd ∧ 𝑋 ∈ (Base‘𝑆) ∧ (𝐶‘((ℤRHom‘𝐾)‘𝑘)) ∈ (Base‘𝑆)) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
349339, 341, 347, 348syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑆))
350349, 120eleqtrdi 2838 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → (𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))) ∈ (Base‘𝑊))
351104, 31, 314, 337, 350mulgnn0cld 18974 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) ∧ 𝑘 ∈ (0...(𝑗 + 1))) → ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))) ∈ (Base‘𝑊))
352104, 306, 307, 312, 351gsummptfzsplit 19811 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑘 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
353305, 352eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = ((𝑊 Σg (𝑘 ∈ (0...𝑗) ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))(+g𝑊)(𝑊 Σg (𝑘 ∈ {(𝑗 + 1)} ↦ ((𝐹𝑘)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑘))))))))
354302, 353breqtrrd 5120 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗𝑗 < 𝐴) ∧ 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝑗) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...(𝑗 + 1)) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
35510, 14, 18, 22, 135, 354, 93, 2, 3fzindd 12578 . . . 4 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴)) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
356355ex 412 . . 3 (𝜑 → ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴𝐴𝐴) → 𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
3576, 356mpd 15 . 2 (𝜑𝐸 (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
358 aks6d1c1.20 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
359358a1i 11 . . 3 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))))
360 simplr 768 . . . . . . 7 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝐹)
361360fveq1d 6824 . . . . . 6 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝐹𝑖))
362361oveq1d 7364 . . . . 5 (((𝜑𝑔 = 𝐹) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))
363362mpteq2dva 5185 . . . 4 ((𝜑𝑔 = 𝐹) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖))))))
364363oveq2d 7365 . . 3 ((𝜑𝑔 = 𝐹) → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
365 nn0ex 12390 . . . . . 6 0 ∈ V
366365a1i 11 . . . . 5 (𝜑 → ℕ0 ∈ V)
367 ovexd 7384 . . . . 5 (𝜑 → (0...𝐴) ∈ V)
368366, 367elmapd 8767 . . . 4 (𝜑 → (𝐹 ∈ (ℕ0m (0...𝐴)) ↔ 𝐹:(0...𝐴)⟶ℕ0))
36992, 368mpbird 257 . . 3 (𝜑𝐹 ∈ (ℕ0m (0...𝐴)))
370 ovexd 7384 . . 3 (𝜑 → (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
371359, 364, 369, 370fvmptd 6937 . 2 (𝜑 → (𝐺𝐹) = (𝑊 Σg (𝑖 ∈ (0...𝐴) ↦ ((𝐹𝑖)𝐷(𝑋 + (𝐶‘((ℤRHom‘𝐾)‘𝑖)))))))
372357, 371breqtrrd 5120 1 (𝜑𝐸 (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  {csn 4577   class class class wbr 5092  {copab 5154  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  cexp 13968  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354   RingIso crs 20355  Fieldcfield 20615  ringczring 21353  ℤRHomczrh 21406  chrcchr 21408  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199   PrimRoots cprimroots 42064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-rim 20358  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-chr 21412  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-primroots 42065
This theorem is referenced by:  aks6d1c1rh  42098
  Copyright terms: Public domain W3C validator