| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version | ||
| Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
| Ref | Expression |
|---|---|
| gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | gcdcom 16490 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℤcz 12536 gcd cgcd 16471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-gcd 16472 |
| This theorem is referenced by: modgcd 16509 rplpwr 16535 rprpwr 16536 coprmprod 16638 rpexp12i 16701 phiprmpw 16753 eulerthlem1 16758 eulerthlem2 16759 prmdiv 16762 coprimeprodsq 16786 pythagtriplem3 16796 prmpwdvds 16882 prmgaplem7 17035 gexexlem 19789 ablfacrp2 20006 pgpfac1lem2 20014 mpodvdsmulf1o 27111 dvdsmulf1o 27113 perfect1 27146 perfectlem1 27147 lgslem1 27215 lgsqrlem2 27265 lgsqr 27269 gausslemma2dlem0c 27276 lgsquad2lem2 27303 lgsquad2 27304 lgsquad3 27305 2sqlem8 27344 2sqmod 27354 nn0prpwlem 36317 aks4d1p8d2 42080 aks4d1p8d3 42081 hashscontpow1 42116 aks6d1c4 42119 aks5 42199 fltbccoprm 42636 flt4lem3 42643 flt4lem5c 42649 flt4lem5d 42650 flt4lem5e 42651 flt4lem5f 42652 flt4lem7 42654 nna4b4nsq 42655 jm2.19lem2 42986 jm2.20nn 42993 perfectALTVlem1 47726 |
| Copyright terms: Public domain | W3C validator |