MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcomd Structured version   Visualization version   GIF version

Theorem gcdcomd 16460
Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
gcdcomd.m (𝜑𝑀 ∈ ℤ)
gcdcomd.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
gcdcomd (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))

Proof of Theorem gcdcomd
StepHypRef Expression
1 gcdcomd.m . 2 (𝜑𝑀 ∈ ℤ)
2 gcdcomd.n . 2 (𝜑𝑁 ∈ ℤ)
3 gcdcom 16459 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
41, 2, 3syl2anc 583 1 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  (class class class)co 7412  cz 12563   gcd cgcd 16440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-mulcl 11175  ax-i2m1 11181  ax-pre-lttri 11187  ax-pre-lttrn 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-gcd 16441
This theorem is referenced by:  modgcd  16479  rplpwr  16504  rprpwr  16505  coprmprod  16603  rpexp12i  16666  phiprmpw  16714  eulerthlem1  16719  eulerthlem2  16720  prmdiv  16723  coprimeprodsq  16746  pythagtriplem3  16756  prmpwdvds  16842  prmgaplem7  16995  gexexlem  19762  ablfacrp2  19979  pgpfac1lem2  19987  dvdsmulf1o  26935  perfect1  26968  perfectlem1  26969  lgslem1  27037  lgsqrlem2  27087  lgsqr  27091  gausslemma2dlem0c  27098  lgsquad2lem2  27125  lgsquad2  27126  lgsquad3  27127  2sqlem8  27166  2sqmod  27176  nn0prpwlem  35511  aks4d1p8d2  41257  aks4d1p8d3  41258  fltbccoprm  41686  flt4lem3  41693  flt4lem5c  41699  flt4lem5d  41700  flt4lem5e  41701  flt4lem5f  41702  flt4lem7  41704  nna4b4nsq  41705  jm2.19lem2  42032  jm2.20nn  42039  perfectALTVlem1  46688
  Copyright terms: Public domain W3C validator