Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version |
Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
Ref | Expression |
---|---|
gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | gcdcom 16148 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℤcz 12249 gcd cgcd 16129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-gcd 16130 |
This theorem is referenced by: modgcd 16168 rplpwr 16195 rprpwr 16196 coprmprod 16294 rpexp12i 16357 phiprmpw 16405 eulerthlem1 16410 eulerthlem2 16411 prmdiv 16414 coprimeprodsq 16437 pythagtriplem3 16447 prmpwdvds 16533 prmgaplem7 16686 gexexlem 19368 ablfacrp2 19585 pgpfac1lem2 19593 dvdsmulf1o 26248 perfect1 26281 perfectlem1 26282 lgslem1 26350 lgsqrlem2 26400 lgsqr 26404 gausslemma2dlem0c 26411 lgsquad2lem2 26438 lgsquad2 26439 lgsquad3 26440 2sqlem8 26479 2sqmod 26489 nn0prpwlem 34438 aks4d1p8d2 40021 aks4d1p8d3 40022 fltbccoprm 40394 flt4lem3 40401 flt4lem5c 40407 flt4lem5d 40408 flt4lem5e 40409 flt4lem5f 40410 flt4lem7 40412 nna4b4nsq 40413 jm2.19lem2 40728 jm2.20nn 40735 perfectALTVlem1 45061 |
Copyright terms: Public domain | W3C validator |