| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version | ||
| Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
| Ref | Expression |
|---|---|
| gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | gcdcom 16532 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℤcz 12588 gcd cgcd 16513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-i2m1 11197 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-gcd 16514 |
| This theorem is referenced by: modgcd 16551 rplpwr 16577 rprpwr 16578 coprmprod 16680 rpexp12i 16743 phiprmpw 16795 eulerthlem1 16800 eulerthlem2 16801 prmdiv 16804 coprimeprodsq 16828 pythagtriplem3 16838 prmpwdvds 16924 prmgaplem7 17077 gexexlem 19833 ablfacrp2 20050 pgpfac1lem2 20058 mpodvdsmulf1o 27156 dvdsmulf1o 27158 perfect1 27191 perfectlem1 27192 lgslem1 27260 lgsqrlem2 27310 lgsqr 27314 gausslemma2dlem0c 27321 lgsquad2lem2 27348 lgsquad2 27349 lgsquad3 27350 2sqlem8 27389 2sqmod 27399 nn0prpwlem 36340 aks4d1p8d2 42098 aks4d1p8d3 42099 hashscontpow1 42134 aks6d1c4 42137 aks5 42217 fltbccoprm 42664 flt4lem3 42671 flt4lem5c 42677 flt4lem5d 42678 flt4lem5e 42679 flt4lem5f 42680 flt4lem7 42682 nna4b4nsq 42683 jm2.19lem2 43014 jm2.20nn 43021 perfectALTVlem1 47735 |
| Copyright terms: Public domain | W3C validator |