| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version | ||
| Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
| Ref | Expression |
|---|---|
| gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | gcdcom 16442 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℤcz 12489 gcd cgcd 16423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-gcd 16424 |
| This theorem is referenced by: modgcd 16461 rplpwr 16487 rprpwr 16488 coprmprod 16590 rpexp12i 16653 phiprmpw 16705 eulerthlem1 16710 eulerthlem2 16711 prmdiv 16714 coprimeprodsq 16738 pythagtriplem3 16748 prmpwdvds 16834 prmgaplem7 16987 gexexlem 19749 ablfacrp2 19966 pgpfac1lem2 19974 mpodvdsmulf1o 27120 dvdsmulf1o 27122 perfect1 27155 perfectlem1 27156 lgslem1 27224 lgsqrlem2 27274 lgsqr 27278 gausslemma2dlem0c 27285 lgsquad2lem2 27312 lgsquad2 27313 lgsquad3 27314 2sqlem8 27353 2sqmod 27363 nn0prpwlem 36295 aks4d1p8d2 42058 aks4d1p8d3 42059 hashscontpow1 42094 aks6d1c4 42097 aks5 42177 fltbccoprm 42614 flt4lem3 42621 flt4lem5c 42627 flt4lem5d 42628 flt4lem5e 42629 flt4lem5f 42630 flt4lem7 42632 nna4b4nsq 42633 jm2.19lem2 42963 jm2.20nn 42970 perfectALTVlem1 47706 |
| Copyright terms: Public domain | W3C validator |