![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version |
Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
Ref | Expression |
---|---|
gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | gcdcom 16559 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℤcz 12639 gcd cgcd 16540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-gcd 16541 |
This theorem is referenced by: modgcd 16579 rplpwr 16605 rprpwr 16606 coprmprod 16708 rpexp12i 16771 phiprmpw 16823 eulerthlem1 16828 eulerthlem2 16829 prmdiv 16832 coprimeprodsq 16855 pythagtriplem3 16865 prmpwdvds 16951 prmgaplem7 17104 gexexlem 19894 ablfacrp2 20111 pgpfac1lem2 20119 mpodvdsmulf1o 27255 dvdsmulf1o 27257 perfect1 27290 perfectlem1 27291 lgslem1 27359 lgsqrlem2 27409 lgsqr 27413 gausslemma2dlem0c 27420 lgsquad2lem2 27447 lgsquad2 27448 lgsquad3 27449 2sqlem8 27488 2sqmod 27498 nn0prpwlem 36288 aks4d1p8d2 42042 aks4d1p8d3 42043 hashscontpow1 42078 aks6d1c4 42081 aks5 42161 fltbccoprm 42596 flt4lem3 42603 flt4lem5c 42609 flt4lem5d 42610 flt4lem5e 42611 flt4lem5f 42612 flt4lem7 42614 nna4b4nsq 42615 jm2.19lem2 42947 jm2.20nn 42954 perfectALTVlem1 47595 |
Copyright terms: Public domain | W3C validator |