Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version |
Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
Ref | Expression |
---|---|
gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | gcdcom 16220 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℤcz 12319 gcd cgcd 16201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-gcd 16202 |
This theorem is referenced by: modgcd 16240 rplpwr 16267 rprpwr 16268 coprmprod 16366 rpexp12i 16429 phiprmpw 16477 eulerthlem1 16482 eulerthlem2 16483 prmdiv 16486 coprimeprodsq 16509 pythagtriplem3 16519 prmpwdvds 16605 prmgaplem7 16758 gexexlem 19453 ablfacrp2 19670 pgpfac1lem2 19678 dvdsmulf1o 26343 perfect1 26376 perfectlem1 26377 lgslem1 26445 lgsqrlem2 26495 lgsqr 26499 gausslemma2dlem0c 26506 lgsquad2lem2 26533 lgsquad2 26534 lgsquad3 26535 2sqlem8 26574 2sqmod 26584 nn0prpwlem 34511 aks4d1p8d2 40093 aks4d1p8d3 40094 fltbccoprm 40478 flt4lem3 40485 flt4lem5c 40491 flt4lem5d 40492 flt4lem5e 40493 flt4lem5f 40494 flt4lem7 40496 nna4b4nsq 40497 jm2.19lem2 40812 jm2.20nn 40819 perfectALTVlem1 45173 |
Copyright terms: Public domain | W3C validator |