MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcomd Structured version   Visualization version   GIF version

Theorem gcdcomd 16560
Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
gcdcomd.m (𝜑𝑀 ∈ ℤ)
gcdcomd.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
gcdcomd (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))

Proof of Theorem gcdcomd
StepHypRef Expression
1 gcdcomd.m . 2 (𝜑𝑀 ∈ ℤ)
2 gcdcomd.n . 2 (𝜑𝑁 ∈ ℤ)
3 gcdcom 16559 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
41, 2, 3syl2anc 583 1 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  cz 12639   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-i2m1 11252  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-gcd 16541
This theorem is referenced by:  modgcd  16579  rplpwr  16605  rprpwr  16606  coprmprod  16708  rpexp12i  16771  phiprmpw  16823  eulerthlem1  16828  eulerthlem2  16829  prmdiv  16832  coprimeprodsq  16855  pythagtriplem3  16865  prmpwdvds  16951  prmgaplem7  17104  gexexlem  19894  ablfacrp2  20111  pgpfac1lem2  20119  mpodvdsmulf1o  27255  dvdsmulf1o  27257  perfect1  27290  perfectlem1  27291  lgslem1  27359  lgsqrlem2  27409  lgsqr  27413  gausslemma2dlem0c  27420  lgsquad2lem2  27447  lgsquad2  27448  lgsquad3  27449  2sqlem8  27488  2sqmod  27498  nn0prpwlem  36288  aks4d1p8d2  42042  aks4d1p8d3  42043  hashscontpow1  42078  aks6d1c4  42081  aks5  42161  fltbccoprm  42596  flt4lem3  42603  flt4lem5c  42609  flt4lem5d  42610  flt4lem5e  42611  flt4lem5f  42612  flt4lem7  42614  nna4b4nsq  42615  jm2.19lem2  42947  jm2.20nn  42954  perfectALTVlem1  47595
  Copyright terms: Public domain W3C validator