| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version | ||
| Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
| Ref | Expression |
|---|---|
| gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | gcdcom 16532 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℤcz 12596 gcd cgcd 16513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-mulcl 11199 ax-i2m1 11205 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-gcd 16514 |
| This theorem is referenced by: modgcd 16551 rplpwr 16577 rprpwr 16578 coprmprod 16680 rpexp12i 16743 phiprmpw 16795 eulerthlem1 16800 eulerthlem2 16801 prmdiv 16804 coprimeprodsq 16828 pythagtriplem3 16838 prmpwdvds 16924 prmgaplem7 17077 gexexlem 19838 ablfacrp2 20055 pgpfac1lem2 20063 mpodvdsmulf1o 27173 dvdsmulf1o 27175 perfect1 27208 perfectlem1 27209 lgslem1 27277 lgsqrlem2 27327 lgsqr 27331 gausslemma2dlem0c 27338 lgsquad2lem2 27365 lgsquad2 27366 lgsquad3 27367 2sqlem8 27406 2sqmod 27416 nn0prpwlem 36282 aks4d1p8d2 42045 aks4d1p8d3 42046 hashscontpow1 42081 aks6d1c4 42084 aks5 42164 fltbccoprm 42614 flt4lem3 42621 flt4lem5c 42627 flt4lem5d 42628 flt4lem5e 42629 flt4lem5f 42630 flt4lem7 42632 nna4b4nsq 42633 jm2.19lem2 42965 jm2.20nn 42972 perfectALTVlem1 47666 |
| Copyright terms: Public domain | W3C validator |