MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcomd Structured version   Visualization version   GIF version

Theorem gcdcomd 16491
Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
gcdcomd.m (𝜑𝑀 ∈ ℤ)
gcdcomd.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
gcdcomd (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))

Proof of Theorem gcdcomd
StepHypRef Expression
1 gcdcomd.m . 2 (𝜑𝑀 ∈ ℤ)
2 gcdcomd.n . 2 (𝜑𝑁 ∈ ℤ)
3 gcdcom 16490 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
41, 2, 3syl2anc 584 1 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7390  cz 12536   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137  ax-i2m1 11143  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-gcd 16472
This theorem is referenced by:  modgcd  16509  rplpwr  16535  rprpwr  16536  coprmprod  16638  rpexp12i  16701  phiprmpw  16753  eulerthlem1  16758  eulerthlem2  16759  prmdiv  16762  coprimeprodsq  16786  pythagtriplem3  16796  prmpwdvds  16882  prmgaplem7  17035  gexexlem  19789  ablfacrp2  20006  pgpfac1lem2  20014  mpodvdsmulf1o  27111  dvdsmulf1o  27113  perfect1  27146  perfectlem1  27147  lgslem1  27215  lgsqrlem2  27265  lgsqr  27269  gausslemma2dlem0c  27276  lgsquad2lem2  27303  lgsquad2  27304  lgsquad3  27305  2sqlem8  27344  2sqmod  27354  nn0prpwlem  36317  aks4d1p8d2  42080  aks4d1p8d3  42081  hashscontpow1  42116  aks6d1c4  42119  aks5  42199  fltbccoprm  42636  flt4lem3  42643  flt4lem5c  42649  flt4lem5d  42650  flt4lem5e  42651  flt4lem5f  42652  flt4lem7  42654  nna4b4nsq  42655  jm2.19lem2  42986  jm2.20nn  42993  perfectALTVlem1  47726
  Copyright terms: Public domain W3C validator