Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gcdcomd | Structured version Visualization version GIF version |
Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
Ref | Expression |
---|---|
gcdcomd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gcdcomd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
gcdcomd | ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcomd.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | gcdcomd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | gcdcom 15949 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 (class class class)co 7164 ℤcz 12055 gcd cgcd 15930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-mulcl 10670 ax-i2m1 10676 ax-pre-lttri 10682 ax-pre-lttrn 10683 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-sup 8972 df-pnf 10748 df-mnf 10749 df-ltxr 10751 df-gcd 15931 |
This theorem is referenced by: modgcd 15969 rplpwr 15996 rprpwr 15997 coprmprod 16095 rpexp12i 16158 phiprmpw 16206 eulerthlem1 16211 eulerthlem2 16212 prmdiv 16215 coprimeprodsq 16238 pythagtriplem3 16248 prmpwdvds 16333 prmgaplem7 16486 gexexlem 19084 ablfacrp2 19301 pgpfac1lem2 19309 dvdsmulf1o 25923 perfect1 25956 perfectlem1 25957 lgslem1 26025 lgsqrlem2 26075 lgsqr 26079 gausslemma2dlem0c 26086 lgsquad2lem2 26113 lgsquad2 26114 lgsquad3 26115 2sqlem8 26154 2sqmod 26164 nn0prpwlem 34141 fltbccoprm 40034 flt4lem3 40041 flt4lem5c 40047 flt4lem5d 40048 flt4lem5e 40049 flt4lem5f 40050 flt4lem7 40052 nna4b4nsq 40053 jm2.19lem2 40368 jm2.20nn 40375 perfectALTVlem1 44691 |
Copyright terms: Public domain | W3C validator |