![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coprimeprodsq2 | Structured version Visualization version GIF version |
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
coprimeprodsq2 | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11792 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
2 | nn0cn 11712 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ) | |
3 | mulcom 10415 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | syl2an 586 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
5 | 4 | 3adant3 1112 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
6 | 5 | adantr 473 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
7 | 6 | eqeq2d 2782 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) ↔ (𝐶↑2) = (𝐵 · 𝐴))) |
8 | simpl2 1172 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐵 ∈ ℕ0) | |
9 | simpl1 1171 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐴 ∈ ℤ) | |
10 | simpl3 1173 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℕ0) | |
11 | nn0z 11812 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
12 | gcdcom 15716 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) | |
13 | 12 | oveq1d 6985 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐵 gcd 𝐴) gcd 𝐶)) |
14 | 13 | eqeq1d 2774 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1)) |
15 | 11, 14 | sylan2 583 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1)) |
16 | 15 | 3adant3 1112 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1)) |
17 | 16 | biimpa 469 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐵 gcd 𝐴) gcd 𝐶) = 1) |
18 | coprimeprodsq 15995 | . . 3 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐵 gcd 𝐴) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐵 · 𝐴) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | |
19 | 8, 9, 10, 17, 18 | syl31anc 1353 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐵 · 𝐴) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
20 | 7, 19 | sylbid 232 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 (class class class)co 6970 ℂcc 10327 1c1 10330 · cmul 10334 2c2 11489 ℕ0cn0 11701 ℤcz 11787 ↑cexp 13238 gcd cgcd 15697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-sup 8695 df-inf 8696 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-z 11788 df-uz 12053 df-rp 12199 df-fl 12971 df-mod 13047 df-seq 13179 df-exp 13239 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-dvds 15462 df-gcd 15698 |
This theorem is referenced by: pythagtriplem7 16009 |
Copyright terms: Public domain | W3C validator |