MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprimeprodsq2 Structured version   Visualization version   GIF version

Theorem coprimeprodsq2 15996
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))

Proof of Theorem coprimeprodsq2
StepHypRef Expression
1 zcn 11792 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2 nn0cn 11712 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
3 mulcom 10415 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3syl2an 586 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
543adant3 1112 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
65adantr 473 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76eqeq2d 2782 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) ↔ (𝐶↑2) = (𝐵 · 𝐴)))
8 simpl2 1172 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐵 ∈ ℕ0)
9 simpl1 1171 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐴 ∈ ℤ)
10 simpl3 1173 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℕ0)
11 nn0z 11812 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
12 gcdcom 15716 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
1312oveq1d 6985 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐵 gcd 𝐴) gcd 𝐶))
1413eqeq1d 2774 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1))
1511, 14sylan2 583 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1))
16153adant3 1112 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1))
1716biimpa 469 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐵 gcd 𝐴) gcd 𝐶) = 1)
18 coprimeprodsq 15995 . . 3 (((𝐵 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐵 gcd 𝐴) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐵 · 𝐴) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))
198, 9, 10, 17, 18syl31anc 1353 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐵 · 𝐴) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))
207, 19sylbid 232 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  (class class class)co 6970  cc 10327  1c1 10330   · cmul 10334  2c2 11489  0cn0 11701  cz 11787  cexp 13238   gcd cgcd 15697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-sup 8695  df-inf 8696  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-n0 11702  df-z 11788  df-uz 12053  df-rp 12199  df-fl 12971  df-mod 13047  df-seq 13179  df-exp 13239  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-dvds 15462  df-gcd 15698
This theorem is referenced by:  pythagtriplem7  16009
  Copyright terms: Public domain W3C validator