MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncongrprm Structured version   Visualization version   GIF version

Theorem cncongrprm 16778
Description: Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
cncongrprm (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))

Proof of Theorem cncongrprm
StepHypRef Expression
1 prmnn 16723 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21ad2antrl 727 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → 𝑃 ∈ ℕ)
3 coprm 16760 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃𝐶 ↔ (𝑃 gcd 𝐶) = 1))
4 prmz 16724 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5 gcdcom 16561 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃))
64, 5sylan 579 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃))
76eqeq1d 2742 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → ((𝑃 gcd 𝐶) = 1 ↔ (𝐶 gcd 𝑃) = 1))
83, 7bitrd 279 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃𝐶 ↔ (𝐶 gcd 𝑃) = 1))
98ancoms 458 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃𝐶 ↔ (𝐶 gcd 𝑃) = 1))
109biimpd 229 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃𝐶 → (𝐶 gcd 𝑃) = 1))
1110expimpd 453 . . . . 5 (𝐶 ∈ ℤ → ((𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶) → (𝐶 gcd 𝑃) = 1))
12113ad2ant3 1135 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶) → (𝐶 gcd 𝑃) = 1))
1312imp 406 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (𝐶 gcd 𝑃) = 1)
142, 13jca 511 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1))
15 cncongrcoprm 16719 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))
1614, 15syldan 590 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7450  1c1 11187   · cmul 11191  cn 12295  cz 12641   mod cmo 13922  cdvds 16304   gcd cgcd 16542  cprime 16720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-sup 9513  df-inf 9514  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-z 12642  df-uz 12906  df-rp 13060  df-fl 13845  df-mod 13923  df-seq 14055  df-exp 14115  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-dvds 16305  df-gcd 16543  df-prm 16721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator