MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdi Structured version   Visualization version   GIF version

Theorem gcdi 16802
Description: Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.)
Hypotheses
Ref Expression
gcdi.1 𝐾 ∈ ℕ0
gcdi.2 𝑅 ∈ ℕ0
gcdi.3 𝑁 ∈ ℕ0
gcdi.5 (𝑁 gcd 𝑅) = 𝐺
gcdi.4 ((𝐾 · 𝑁) + 𝑅) = 𝑀
Assertion
Ref Expression
gcdi (𝑀 gcd 𝑁) = 𝐺

Proof of Theorem gcdi
StepHypRef Expression
1 gcdi.1 . . . . . . 7 𝐾 ∈ ℕ0
2 gcdi.3 . . . . . . 7 𝑁 ∈ ℕ0
31, 2nn0mulcli 12299 . . . . . 6 (𝐾 · 𝑁) ∈ ℕ0
43nn0cni 12273 . . . . 5 (𝐾 · 𝑁) ∈ ℂ
5 gcdi.2 . . . . . 6 𝑅 ∈ ℕ0
65nn0cni 12273 . . . . 5 𝑅 ∈ ℂ
7 gcdi.4 . . . . 5 ((𝐾 · 𝑁) + 𝑅) = 𝑀
84, 6, 7addcomli 11195 . . . 4 (𝑅 + (𝐾 · 𝑁)) = 𝑀
98oveq2i 7306 . . 3 (𝑁 gcd (𝑅 + (𝐾 · 𝑁))) = (𝑁 gcd 𝑀)
101nn0zi 12373 . . . 4 𝐾 ∈ ℤ
112nn0zi 12373 . . . 4 𝑁 ∈ ℤ
125nn0zi 12373 . . . 4 𝑅 ∈ ℤ
13 gcdaddm 16260 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑁 gcd (𝑅 + (𝐾 · 𝑁))))
1410, 11, 12, 13mp3an 1459 . . 3 (𝑁 gcd 𝑅) = (𝑁 gcd (𝑅 + (𝐾 · 𝑁)))
151, 2, 5numcl 12478 . . . . . 6 ((𝐾 · 𝑁) + 𝑅) ∈ ℕ0
167, 15eqeltrri 2831 . . . . 5 𝑀 ∈ ℕ0
1716nn0zi 12373 . . . 4 𝑀 ∈ ℤ
18 gcdcom 16248 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
1917, 11, 18mp2an 688 . . 3 (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)
209, 14, 193eqtr4i 2771 . 2 (𝑁 gcd 𝑅) = (𝑀 gcd 𝑁)
21 gcdi.5 . 2 (𝑁 gcd 𝑅) = 𝐺
2220, 21eqtr3i 2763 1 (𝑀 gcd 𝑁) = 𝐺
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2101  (class class class)co 7295   + caddc 10902   · cmul 10904  0cn0 12261  cz 12347   gcd cgcd 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-sup 9229  df-inf 9230  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-seq 13750  df-exp 13811  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-dvds 15992  df-gcd 16230
This theorem is referenced by:  1259lem5  16864  2503lem3  16868  4001lem4  16873
  Copyright terms: Public domain W3C validator