MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdi Structured version   Visualization version   GIF version

Theorem gcdi 16626
Description: Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.)
Hypotheses
Ref Expression
gcdi.1 𝐾 ∈ ℕ0
gcdi.2 𝑅 ∈ ℕ0
gcdi.3 𝑁 ∈ ℕ0
gcdi.5 (𝑁 gcd 𝑅) = 𝐺
gcdi.4 ((𝐾 · 𝑁) + 𝑅) = 𝑀
Assertion
Ref Expression
gcdi (𝑀 gcd 𝑁) = 𝐺

Proof of Theorem gcdi
StepHypRef Expression
1 gcdi.1 . . . . . . 7 𝐾 ∈ ℕ0
2 gcdi.3 . . . . . . 7 𝑁 ∈ ℕ0
31, 2nn0mulcli 12128 . . . . . 6 (𝐾 · 𝑁) ∈ ℕ0
43nn0cni 12102 . . . . 5 (𝐾 · 𝑁) ∈ ℂ
5 gcdi.2 . . . . . 6 𝑅 ∈ ℕ0
65nn0cni 12102 . . . . 5 𝑅 ∈ ℂ
7 gcdi.4 . . . . 5 ((𝐾 · 𝑁) + 𝑅) = 𝑀
84, 6, 7addcomli 11024 . . . 4 (𝑅 + (𝐾 · 𝑁)) = 𝑀
98oveq2i 7224 . . 3 (𝑁 gcd (𝑅 + (𝐾 · 𝑁))) = (𝑁 gcd 𝑀)
101nn0zi 12202 . . . 4 𝐾 ∈ ℤ
112nn0zi 12202 . . . 4 𝑁 ∈ ℤ
125nn0zi 12202 . . . 4 𝑅 ∈ ℤ
13 gcdaddm 16084 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑁 gcd (𝑅 + (𝐾 · 𝑁))))
1410, 11, 12, 13mp3an 1463 . . 3 (𝑁 gcd 𝑅) = (𝑁 gcd (𝑅 + (𝐾 · 𝑁)))
151, 2, 5numcl 12306 . . . . . 6 ((𝐾 · 𝑁) + 𝑅) ∈ ℕ0
167, 15eqeltrri 2835 . . . . 5 𝑀 ∈ ℕ0
1716nn0zi 12202 . . . 4 𝑀 ∈ ℤ
18 gcdcom 16072 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
1917, 11, 18mp2an 692 . . 3 (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)
209, 14, 193eqtr4i 2775 . 2 (𝑁 gcd 𝑅) = (𝑀 gcd 𝑁)
21 gcdi.5 . 2 (𝑁 gcd 𝑅) = 𝐺
2220, 21eqtr3i 2767 1 (𝑀 gcd 𝑁) = 𝐺
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  (class class class)co 7213   + caddc 10732   · cmul 10734  0cn0 12090  cz 12176   gcd cgcd 16053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-gcd 16054
This theorem is referenced by:  1259lem5  16688  2503lem3  16692  4001lem4  16697
  Copyright terms: Public domain W3C validator