![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdi | Structured version Visualization version GIF version |
Description: Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.) |
Ref | Expression |
---|---|
gcdi.1 | โข ๐พ โ โ0 |
gcdi.2 | โข ๐ โ โ0 |
gcdi.3 | โข ๐ โ โ0 |
gcdi.5 | โข (๐ gcd ๐ ) = ๐บ |
gcdi.4 | โข ((๐พ ยท ๐) + ๐ ) = ๐ |
Ref | Expression |
---|---|
gcdi | โข (๐ gcd ๐) = ๐บ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdi.1 | . . . . . . 7 โข ๐พ โ โ0 | |
2 | gcdi.3 | . . . . . . 7 โข ๐ โ โ0 | |
3 | 1, 2 | nn0mulcli 12511 | . . . . . 6 โข (๐พ ยท ๐) โ โ0 |
4 | 3 | nn0cni 12485 | . . . . 5 โข (๐พ ยท ๐) โ โ |
5 | gcdi.2 | . . . . . 6 โข ๐ โ โ0 | |
6 | 5 | nn0cni 12485 | . . . . 5 โข ๐ โ โ |
7 | gcdi.4 | . . . . 5 โข ((๐พ ยท ๐) + ๐ ) = ๐ | |
8 | 4, 6, 7 | addcomli 11407 | . . . 4 โข (๐ + (๐พ ยท ๐)) = ๐ |
9 | 8 | oveq2i 7415 | . . 3 โข (๐ gcd (๐ + (๐พ ยท ๐))) = (๐ gcd ๐) |
10 | 1 | nn0zi 12588 | . . . 4 โข ๐พ โ โค |
11 | 2 | nn0zi 12588 | . . . 4 โข ๐ โ โค |
12 | 5 | nn0zi 12588 | . . . 4 โข ๐ โ โค |
13 | gcdaddm 16470 | . . . 4 โข ((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โ (๐ gcd ๐ ) = (๐ gcd (๐ + (๐พ ยท ๐)))) | |
14 | 10, 11, 12, 13 | mp3an 1457 | . . 3 โข (๐ gcd ๐ ) = (๐ gcd (๐ + (๐พ ยท ๐))) |
15 | 1, 2, 5 | numcl 12691 | . . . . . 6 โข ((๐พ ยท ๐) + ๐ ) โ โ0 |
16 | 7, 15 | eqeltrri 2824 | . . . . 5 โข ๐ โ โ0 |
17 | 16 | nn0zi 12588 | . . . 4 โข ๐ โ โค |
18 | gcdcom 16458 | . . . 4 โข ((๐ โ โค โง ๐ โ โค) โ (๐ gcd ๐) = (๐ gcd ๐)) | |
19 | 17, 11, 18 | mp2an 689 | . . 3 โข (๐ gcd ๐) = (๐ gcd ๐) |
20 | 9, 14, 19 | 3eqtr4i 2764 | . 2 โข (๐ gcd ๐ ) = (๐ gcd ๐) |
21 | gcdi.5 | . 2 โข (๐ gcd ๐ ) = ๐บ | |
22 | 20, 21 | eqtr3i 2756 | 1 โข (๐ gcd ๐) = ๐บ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 (class class class)co 7404 + caddc 11112 ยท cmul 11114 โ0cn0 12473 โคcz 12559 gcd cgcd 16439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-seq 13970 df-exp 14030 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-dvds 16202 df-gcd 16440 |
This theorem is referenced by: 1259lem5 17074 2503lem3 17078 4001lem4 17083 |
Copyright terms: Public domain | W3C validator |