| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gcdi | Structured version Visualization version GIF version | ||
| Description: Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.) |
| Ref | Expression |
|---|---|
| gcdi.1 | ⊢ 𝐾 ∈ ℕ0 |
| gcdi.2 | ⊢ 𝑅 ∈ ℕ0 |
| gcdi.3 | ⊢ 𝑁 ∈ ℕ0 |
| gcdi.5 | ⊢ (𝑁 gcd 𝑅) = 𝐺 |
| gcdi.4 | ⊢ ((𝐾 · 𝑁) + 𝑅) = 𝑀 |
| Ref | Expression |
|---|---|
| gcdi | ⊢ (𝑀 gcd 𝑁) = 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdi.1 | . . . . . . 7 ⊢ 𝐾 ∈ ℕ0 | |
| 2 | gcdi.3 | . . . . . . 7 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | 1, 2 | nn0mulcli 12411 | . . . . . 6 ⊢ (𝐾 · 𝑁) ∈ ℕ0 |
| 4 | 3 | nn0cni 12385 | . . . . 5 ⊢ (𝐾 · 𝑁) ∈ ℂ |
| 5 | gcdi.2 | . . . . . 6 ⊢ 𝑅 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12385 | . . . . 5 ⊢ 𝑅 ∈ ℂ |
| 7 | gcdi.4 | . . . . 5 ⊢ ((𝐾 · 𝑁) + 𝑅) = 𝑀 | |
| 8 | 4, 6, 7 | addcomli 11297 | . . . 4 ⊢ (𝑅 + (𝐾 · 𝑁)) = 𝑀 |
| 9 | 8 | oveq2i 7352 | . . 3 ⊢ (𝑁 gcd (𝑅 + (𝐾 · 𝑁))) = (𝑁 gcd 𝑀) |
| 10 | 1 | nn0zi 12489 | . . . 4 ⊢ 𝐾 ∈ ℤ |
| 11 | 2 | nn0zi 12489 | . . . 4 ⊢ 𝑁 ∈ ℤ |
| 12 | 5 | nn0zi 12489 | . . . 4 ⊢ 𝑅 ∈ ℤ |
| 13 | gcdaddm 16428 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 gcd 𝑅) = (𝑁 gcd (𝑅 + (𝐾 · 𝑁)))) | |
| 14 | 10, 11, 12, 13 | mp3an 1463 | . . 3 ⊢ (𝑁 gcd 𝑅) = (𝑁 gcd (𝑅 + (𝐾 · 𝑁))) |
| 15 | 1, 2, 5 | numcl 12593 | . . . . . 6 ⊢ ((𝐾 · 𝑁) + 𝑅) ∈ ℕ0 |
| 16 | 7, 15 | eqeltrri 2826 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
| 17 | 16 | nn0zi 12489 | . . . 4 ⊢ 𝑀 ∈ ℤ |
| 18 | gcdcom 16416 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | |
| 19 | 17, 11, 18 | mp2an 692 | . . 3 ⊢ (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀) |
| 20 | 9, 14, 19 | 3eqtr4i 2763 | . 2 ⊢ (𝑁 gcd 𝑅) = (𝑀 gcd 𝑁) |
| 21 | gcdi.5 | . 2 ⊢ (𝑁 gcd 𝑅) = 𝐺 | |
| 22 | 20, 21 | eqtr3i 2755 | 1 ⊢ (𝑀 gcd 𝑁) = 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 (class class class)co 7341 + caddc 11001 · cmul 11003 ℕ0cn0 12373 ℤcz 12460 gcd cgcd 16397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-dvds 16156 df-gcd 16398 |
| This theorem is referenced by: 1259lem5 17038 2503lem3 17042 4001lem4 17047 |
| Copyright terms: Public domain | W3C validator |