| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odinv | Structured version Visualization version GIF version | ||
| Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| odinv.1 | ⊢ 𝑂 = (od‘𝐺) |
| odinv.2 | ⊢ 𝐼 = (invg‘𝐺) |
| odinv.3 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| odinv | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z 12508 | . . 3 ⊢ -1 ∈ ℤ | |
| 2 | odinv.3 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | odinv.1 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
| 4 | eqid 2731 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 5 | 2, 3, 4 | odmulg 19468 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ -1 ∈ ℤ) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
| 6 | 1, 5 | mp3an3 1452 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
| 7 | 2, 3 | odcl 19448 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
| 9 | 8 | nn0zd 12494 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℤ) |
| 10 | gcdcom 16424 | . . . . 5 ⊢ ((-1 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) | |
| 11 | 1, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) |
| 12 | 1z 12502 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 13 | gcdneg 16433 | . . . . 5 ⊢ (((𝑂‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) | |
| 14 | 9, 12, 13 | sylancl 586 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) |
| 15 | gcd1 16439 | . . . . 5 ⊢ ((𝑂‘𝐴) ∈ ℤ → ((𝑂‘𝐴) gcd 1) = 1) | |
| 16 | 9, 15 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd 1) = 1) |
| 17 | 11, 14, 16 | 3eqtrd 2770 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = 1) |
| 18 | odinv.2 | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
| 19 | 2, 4, 18 | mulgm1 19007 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1(.g‘𝐺)𝐴) = (𝐼‘𝐴)) |
| 20 | 19 | fveq2d 6826 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(-1(.g‘𝐺)𝐴)) = (𝑂‘(𝐼‘𝐴))) |
| 21 | 17, 20 | oveq12d 7364 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴))) = (1 · (𝑂‘(𝐼‘𝐴)))) |
| 22 | 2, 18 | grpinvcl 18900 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
| 23 | 2, 3 | odcl 19448 | . . . . 5 ⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
| 24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
| 25 | 24 | nn0cnd 12444 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℂ) |
| 26 | 25 | mullidd 11130 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (1 · (𝑂‘(𝐼‘𝐴))) = (𝑂‘(𝐼‘𝐴))) |
| 27 | 6, 21, 26 | 3eqtrrd 2771 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 1c1 11007 · cmul 11011 -cneg 11345 ℕ0cn0 12381 ℤcz 12468 gcd cgcd 16405 Basecbs 17120 Grpcgrp 18846 invgcminusg 18847 .gcmg 18980 odcod 19436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-od 19440 |
| This theorem is referenced by: torsubg 19766 oddvdssubg 19767 |
| Copyright terms: Public domain | W3C validator |