MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odinv Structured version   Visualization version   GIF version

Theorem odinv 18666
Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odinv.1 𝑂 = (od‘𝐺)
odinv.2 𝐼 = (invg𝐺)
odinv.3 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
odinv ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) = (𝑂𝐴))

Proof of Theorem odinv
StepHypRef Expression
1 neg1z 12000 . . 3 -1 ∈ ℤ
2 odinv.3 . . . 4 𝑋 = (Base‘𝐺)
3 odinv.1 . . . 4 𝑂 = (od‘𝐺)
4 eqid 2820 . . . 4 (.g𝐺) = (.g𝐺)
52, 3, 4odmulg 18661 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ -1 ∈ ℤ) → (𝑂𝐴) = ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))))
61, 5mp3an3 1446 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))))
72, 3odcl 18642 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
87adantl 484 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ0)
98nn0zd 12067 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℤ)
10 gcdcom 15840 . . . . 5 ((-1 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (-1 gcd (𝑂𝐴)) = ((𝑂𝐴) gcd -1))
111, 9, 10sylancr 589 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1 gcd (𝑂𝐴)) = ((𝑂𝐴) gcd -1))
12 1z 11994 . . . . 5 1 ∈ ℤ
13 gcdneg 15848 . . . . 5 (((𝑂𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑂𝐴) gcd -1) = ((𝑂𝐴) gcd 1))
149, 12, 13sylancl 588 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) gcd -1) = ((𝑂𝐴) gcd 1))
15 gcd1 15854 . . . . 5 ((𝑂𝐴) ∈ ℤ → ((𝑂𝐴) gcd 1) = 1)
169, 15syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) gcd 1) = 1)
1711, 14, 163eqtrd 2859 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1 gcd (𝑂𝐴)) = 1)
18 odinv.2 . . . . 5 𝐼 = (invg𝐺)
192, 4, 18mulgm1 18226 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1(.g𝐺)𝐴) = (𝐼𝐴))
2019fveq2d 6655 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(-1(.g𝐺)𝐴)) = (𝑂‘(𝐼𝐴)))
2117, 20oveq12d 7155 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))) = (1 · (𝑂‘(𝐼𝐴))))
222, 18grpinvcl 18129 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
232, 3odcl 18642 . . . . 5 ((𝐼𝐴) ∈ 𝑋 → (𝑂‘(𝐼𝐴)) ∈ ℕ0)
2422, 23syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) ∈ ℕ0)
2524nn0cnd 11939 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) ∈ ℂ)
2625mulid2d 10640 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (1 · (𝑂‘(𝐼𝐴))) = (𝑂‘(𝐼𝐴)))
276, 21, 263eqtrrd 2860 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6336  (class class class)co 7137  1c1 10519   · cmul 10523  -cneg 10852  0cn0 11879  cz 11963   gcd cgcd 15821  Basecbs 16461  Grpcgrp 18081  invgcminusg 18082  .gcmg 18202  odcod 18630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595  ax-pre-sup 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-er 8270  df-en 8491  df-dom 8492  df-sdom 8493  df-sup 8887  df-inf 8888  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-div 11279  df-nn 11620  df-2 11682  df-3 11683  df-n0 11880  df-z 11964  df-uz 12226  df-rp 12372  df-fz 12878  df-fl 13147  df-mod 13223  df-seq 13355  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-dvds 15588  df-gcd 15822  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-sbg 18086  df-mulg 18203  df-od 18634
This theorem is referenced by:  torsubg  18952  oddvdssubg  18953
  Copyright terms: Public domain W3C validator