MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odinv Structured version   Visualization version   GIF version

Theorem odinv 18184
Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odinv.1 𝑂 = (od‘𝐺)
odinv.2 𝐼 = (invg𝐺)
odinv.3 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
odinv ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) = (𝑂𝐴))

Proof of Theorem odinv
StepHypRef Expression
1 neg1z 11619 . . 3 -1 ∈ ℤ
2 odinv.3 . . . 4 𝑋 = (Base‘𝐺)
3 odinv.1 . . . 4 𝑂 = (od‘𝐺)
4 eqid 2771 . . . 4 (.g𝐺) = (.g𝐺)
52, 3, 4odmulg 18179 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ -1 ∈ ℤ) → (𝑂𝐴) = ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))))
61, 5mp3an3 1561 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))))
72, 3odcl 18161 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
87adantl 467 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ0)
98nn0zd 11686 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℤ)
10 gcdcom 15442 . . . . 5 ((-1 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (-1 gcd (𝑂𝐴)) = ((𝑂𝐴) gcd -1))
111, 9, 10sylancr 575 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1 gcd (𝑂𝐴)) = ((𝑂𝐴) gcd -1))
12 1z 11613 . . . . 5 1 ∈ ℤ
13 gcdneg 15450 . . . . 5 (((𝑂𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑂𝐴) gcd -1) = ((𝑂𝐴) gcd 1))
149, 12, 13sylancl 574 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) gcd -1) = ((𝑂𝐴) gcd 1))
15 gcd1 15456 . . . . 5 ((𝑂𝐴) ∈ ℤ → ((𝑂𝐴) gcd 1) = 1)
169, 15syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) gcd 1) = 1)
1711, 14, 163eqtrd 2809 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1 gcd (𝑂𝐴)) = 1)
18 odinv.2 . . . . 5 𝐼 = (invg𝐺)
192, 4, 18mulgm1 17769 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1(.g𝐺)𝐴) = (𝐼𝐴))
2019fveq2d 6337 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(-1(.g𝐺)𝐴)) = (𝑂‘(𝐼𝐴)))
2117, 20oveq12d 6813 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))) = (1 · (𝑂‘(𝐼𝐴))))
222, 18grpinvcl 17674 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
232, 3odcl 18161 . . . . 5 ((𝐼𝐴) ∈ 𝑋 → (𝑂‘(𝐼𝐴)) ∈ ℕ0)
2422, 23syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) ∈ ℕ0)
2524nn0cnd 11559 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) ∈ ℂ)
2625mulid2d 10263 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (1 · (𝑂‘(𝐼𝐴))) = (𝑂‘(𝐼𝐴)))
276, 21, 263eqtrrd 2810 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6030  (class class class)co 6795  1c1 10142   · cmul 10146  -cneg 10472  0cn0 11498  cz 11583   gcd cgcd 15423  Basecbs 16063  Grpcgrp 17629  invgcminusg 17630  .gcmg 17747  odcod 18150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fz 12533  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-od 18154
This theorem is referenced by:  torsubg  18463  oddvdssubg  18464
  Copyright terms: Public domain W3C validator