Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odinv | Structured version Visualization version GIF version |
Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
odinv.1 | ⊢ 𝑂 = (od‘𝐺) |
odinv.2 | ⊢ 𝐼 = (invg‘𝐺) |
odinv.3 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
odinv | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1z 12286 | . . 3 ⊢ -1 ∈ ℤ | |
2 | odinv.3 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
3 | odinv.1 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
4 | eqid 2738 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
5 | 2, 3, 4 | odmulg 19078 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ -1 ∈ ℤ) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
6 | 1, 5 | mp3an3 1448 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
7 | 2, 3 | odcl 19059 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
9 | 8 | nn0zd 12353 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℤ) |
10 | gcdcom 16148 | . . . . 5 ⊢ ((-1 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) | |
11 | 1, 9, 10 | sylancr 586 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) |
12 | 1z 12280 | . . . . 5 ⊢ 1 ∈ ℤ | |
13 | gcdneg 16157 | . . . . 5 ⊢ (((𝑂‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) | |
14 | 9, 12, 13 | sylancl 585 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) |
15 | gcd1 16163 | . . . . 5 ⊢ ((𝑂‘𝐴) ∈ ℤ → ((𝑂‘𝐴) gcd 1) = 1) | |
16 | 9, 15 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd 1) = 1) |
17 | 11, 14, 16 | 3eqtrd 2782 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = 1) |
18 | odinv.2 | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
19 | 2, 4, 18 | mulgm1 18639 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1(.g‘𝐺)𝐴) = (𝐼‘𝐴)) |
20 | 19 | fveq2d 6760 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(-1(.g‘𝐺)𝐴)) = (𝑂‘(𝐼‘𝐴))) |
21 | 17, 20 | oveq12d 7273 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴))) = (1 · (𝑂‘(𝐼‘𝐴)))) |
22 | 2, 18 | grpinvcl 18542 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
23 | 2, 3 | odcl 19059 | . . . . 5 ⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
25 | 24 | nn0cnd 12225 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℂ) |
26 | 25 | mulid2d 10924 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (1 · (𝑂‘(𝐼‘𝐴))) = (𝑂‘(𝐼‘𝐴))) |
27 | 6, 21, 26 | 3eqtrrd 2783 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 1c1 10803 · cmul 10807 -cneg 11136 ℕ0cn0 12163 ℤcz 12249 gcd cgcd 16129 Basecbs 16840 Grpcgrp 18492 invgcminusg 18493 .gcmg 18615 odcod 19047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-od 19051 |
This theorem is referenced by: torsubg 19370 oddvdssubg 19371 |
Copyright terms: Public domain | W3C validator |