| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odinv | Structured version Visualization version GIF version | ||
| Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| odinv.1 | ⊢ 𝑂 = (od‘𝐺) |
| odinv.2 | ⊢ 𝐼 = (invg‘𝐺) |
| odinv.3 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| odinv | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z 12653 | . . 3 ⊢ -1 ∈ ℤ | |
| 2 | odinv.3 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | odinv.1 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
| 4 | eqid 2737 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 5 | 2, 3, 4 | odmulg 19574 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ -1 ∈ ℤ) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
| 6 | 1, 5 | mp3an3 1452 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
| 7 | 2, 3 | odcl 19554 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
| 9 | 8 | nn0zd 12639 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℤ) |
| 10 | gcdcom 16550 | . . . . 5 ⊢ ((-1 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) | |
| 11 | 1, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) |
| 12 | 1z 12647 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 13 | gcdneg 16559 | . . . . 5 ⊢ (((𝑂‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) | |
| 14 | 9, 12, 13 | sylancl 586 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) |
| 15 | gcd1 16565 | . . . . 5 ⊢ ((𝑂‘𝐴) ∈ ℤ → ((𝑂‘𝐴) gcd 1) = 1) | |
| 16 | 9, 15 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd 1) = 1) |
| 17 | 11, 14, 16 | 3eqtrd 2781 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = 1) |
| 18 | odinv.2 | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
| 19 | 2, 4, 18 | mulgm1 19112 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1(.g‘𝐺)𝐴) = (𝐼‘𝐴)) |
| 20 | 19 | fveq2d 6910 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(-1(.g‘𝐺)𝐴)) = (𝑂‘(𝐼‘𝐴))) |
| 21 | 17, 20 | oveq12d 7449 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴))) = (1 · (𝑂‘(𝐼‘𝐴)))) |
| 22 | 2, 18 | grpinvcl 19005 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
| 23 | 2, 3 | odcl 19554 | . . . . 5 ⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
| 24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
| 25 | 24 | nn0cnd 12589 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℂ) |
| 26 | 25 | mullidd 11279 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (1 · (𝑂‘(𝐼‘𝐴))) = (𝑂‘(𝐼‘𝐴))) |
| 27 | 6, 21, 26 | 3eqtrrd 2782 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 1c1 11156 · cmul 11160 -cneg 11493 ℕ0cn0 12526 ℤcz 12613 gcd cgcd 16531 Basecbs 17247 Grpcgrp 18951 invgcminusg 18952 .gcmg 19085 odcod 19542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-od 19546 |
| This theorem is referenced by: torsubg 19872 oddvdssubg 19873 |
| Copyright terms: Public domain | W3C validator |