![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odinv | Structured version Visualization version GIF version |
Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
odinv.1 | ⊢ 𝑂 = (od‘𝐺) |
odinv.2 | ⊢ 𝐼 = (invg‘𝐺) |
odinv.3 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
odinv | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1z 12679 | . . 3 ⊢ -1 ∈ ℤ | |
2 | odinv.3 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
3 | odinv.1 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
4 | eqid 2740 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
5 | 2, 3, 4 | odmulg 19598 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ -1 ∈ ℤ) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
6 | 1, 5 | mp3an3 1450 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴)))) |
7 | 2, 3 | odcl 19578 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
9 | 8 | nn0zd 12665 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℤ) |
10 | gcdcom 16559 | . . . . 5 ⊢ ((-1 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) | |
11 | 1, 9, 10 | sylancr 586 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = ((𝑂‘𝐴) gcd -1)) |
12 | 1z 12673 | . . . . 5 ⊢ 1 ∈ ℤ | |
13 | gcdneg 16568 | . . . . 5 ⊢ (((𝑂‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) | |
14 | 9, 12, 13 | sylancl 585 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd -1) = ((𝑂‘𝐴) gcd 1)) |
15 | gcd1 16574 | . . . . 5 ⊢ ((𝑂‘𝐴) ∈ ℤ → ((𝑂‘𝐴) gcd 1) = 1) | |
16 | 9, 15 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) gcd 1) = 1) |
17 | 11, 14, 16 | 3eqtrd 2784 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1 gcd (𝑂‘𝐴)) = 1) |
18 | odinv.2 | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
19 | 2, 4, 18 | mulgm1 19134 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (-1(.g‘𝐺)𝐴) = (𝐼‘𝐴)) |
20 | 19 | fveq2d 6924 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(-1(.g‘𝐺)𝐴)) = (𝑂‘(𝐼‘𝐴))) |
21 | 17, 20 | oveq12d 7466 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((-1 gcd (𝑂‘𝐴)) · (𝑂‘(-1(.g‘𝐺)𝐴))) = (1 · (𝑂‘(𝐼‘𝐴)))) |
22 | 2, 18 | grpinvcl 19027 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
23 | 2, 3 | odcl 19578 | . . . . 5 ⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℕ0) |
25 | 24 | nn0cnd 12615 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) ∈ ℂ) |
26 | 25 | mullidd 11308 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (1 · (𝑂‘(𝐼‘𝐴))) = (𝑂‘(𝐼‘𝐴))) |
27 | 6, 21, 26 | 3eqtrrd 2785 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘(𝐼‘𝐴)) = (𝑂‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 1c1 11185 · cmul 11189 -cneg 11521 ℕ0cn0 12553 ℤcz 12639 gcd cgcd 16540 Basecbs 17258 Grpcgrp 18973 invgcminusg 18974 .gcmg 19107 odcod 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-od 19570 |
This theorem is referenced by: torsubg 19896 oddvdssubg 19897 |
Copyright terms: Public domain | W3C validator |