MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odinv Structured version   Visualization version   GIF version

Theorem odinv 19269
Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odinv.1 𝑂 = (od‘𝐺)
odinv.2 𝐼 = (invg𝐺)
odinv.3 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
odinv ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) = (𝑂𝐴))

Proof of Theorem odinv
StepHypRef Expression
1 neg1z 12466 . . 3 -1 ∈ ℤ
2 odinv.3 . . . 4 𝑋 = (Base‘𝐺)
3 odinv.1 . . . 4 𝑂 = (od‘𝐺)
4 eqid 2737 . . . 4 (.g𝐺) = (.g𝐺)
52, 3, 4odmulg 19264 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ -1 ∈ ℤ) → (𝑂𝐴) = ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))))
61, 5mp3an3 1450 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))))
72, 3odcl 19245 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
87adantl 483 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ0)
98nn0zd 12534 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℤ)
10 gcdcom 16324 . . . . 5 ((-1 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (-1 gcd (𝑂𝐴)) = ((𝑂𝐴) gcd -1))
111, 9, 10sylancr 588 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1 gcd (𝑂𝐴)) = ((𝑂𝐴) gcd -1))
12 1z 12460 . . . . 5 1 ∈ ℤ
13 gcdneg 16333 . . . . 5 (((𝑂𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑂𝐴) gcd -1) = ((𝑂𝐴) gcd 1))
149, 12, 13sylancl 587 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) gcd -1) = ((𝑂𝐴) gcd 1))
15 gcd1 16339 . . . . 5 ((𝑂𝐴) ∈ ℤ → ((𝑂𝐴) gcd 1) = 1)
169, 15syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) gcd 1) = 1)
1711, 14, 163eqtrd 2781 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1 gcd (𝑂𝐴)) = 1)
18 odinv.2 . . . . 5 𝐼 = (invg𝐺)
192, 4, 18mulgm1 18825 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (-1(.g𝐺)𝐴) = (𝐼𝐴))
2019fveq2d 6838 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(-1(.g𝐺)𝐴)) = (𝑂‘(𝐼𝐴)))
2117, 20oveq12d 7364 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((-1 gcd (𝑂𝐴)) · (𝑂‘(-1(.g𝐺)𝐴))) = (1 · (𝑂‘(𝐼𝐴))))
222, 18grpinvcl 18728 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
232, 3odcl 19245 . . . . 5 ((𝐼𝐴) ∈ 𝑋 → (𝑂‘(𝐼𝐴)) ∈ ℕ0)
2422, 23syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) ∈ ℕ0)
2524nn0cnd 12405 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) ∈ ℂ)
2625mulid2d 11103 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (1 · (𝑂‘(𝐼𝐴))) = (𝑂‘(𝐼𝐴)))
276, 21, 263eqtrrd 2782 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂‘(𝐼𝐴)) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  cfv 6488  (class class class)co 7346  1c1 10982   · cmul 10986  -cneg 11316  0cn0 12343  cz 12429   gcd cgcd 16305  Basecbs 17014  Grpcgrp 18678  invgcminusg 18679  .gcmg 18801  odcod 19233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-sup 9308  df-inf 9309  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-z 12430  df-uz 12693  df-rp 12841  df-fz 13350  df-fl 13622  df-mod 13700  df-seq 13832  df-exp 13893  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-dvds 16068  df-gcd 16306  df-0g 17254  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-grp 18681  df-minusg 18682  df-sbg 18683  df-mulg 18802  df-od 19237
This theorem is referenced by:  torsubg  19555  oddvdssubg  19556
  Copyright terms: Public domain W3C validator