Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vfermltl | Structured version Visualization version GIF version |
Description: Variant of Fermat's little theorem if 𝐴 is not a multiple of 𝑃, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
vfermltl | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phiprm 16406 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1)) | |
2 | 1 | eqcomd 2744 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 − 1) = (ϕ‘𝑃)) |
3 | 2 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑃 − 1) = (ϕ‘𝑃)) |
4 | 3 | oveq2d 7271 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴↑(𝑃 − 1)) = (𝐴↑(ϕ‘𝑃))) |
5 | 4 | oveq1d 7270 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = ((𝐴↑(ϕ‘𝑃)) mod 𝑃)) |
6 | prmnn 16307 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
7 | 6 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → 𝑃 ∈ ℕ) |
8 | simp2 1135 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → 𝐴 ∈ ℤ) | |
9 | prmz 16308 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
10 | 9 | anim1ci 615 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
11 | 10 | 3adant3 1130 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
12 | gcdcom 16148 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴)) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴)) |
14 | coprm 16344 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | |
15 | 14 | biimp3a 1467 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑃 gcd 𝐴) = 1) |
16 | 13, 15 | eqtrd 2778 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝐴 gcd 𝑃) = 1) |
17 | eulerth 16412 | . . 3 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) | |
18 | 7, 8, 16, 17 | syl3anc 1369 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) |
19 | 6 | nnred 11918 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
20 | prmgt1 16330 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
21 | 19, 20 | jca 511 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃)) |
22 | 21 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑃 ∈ ℝ ∧ 1 < 𝑃)) |
23 | 1mod 13551 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
24 | 22, 23 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (1 mod 𝑃) = 1) |
25 | 5, 18, 24 | 3eqtrd 2782 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 < clt 10940 − cmin 11135 ℕcn 11903 ℤcz 12249 mod cmo 13517 ↑cexp 13710 ∥ cdvds 15891 gcd cgcd 16129 ℙcprime 16304 ϕcphi 16393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-phi 16395 |
This theorem is referenced by: sfprmdvdsmersenne 44943 |
Copyright terms: Public domain | W3C validator |